from typing import Optional import torch.nn as nn import torch import torch.nn.functional as F from diffusers.models.embeddings import apply_rotary_emb from einops import rearrange from .norm_layer import RMSNorm class FluxIPAttnProcessor(nn.Module): """Attention processor used typically in processing the SD3-like self-attention projections.""" def __init__( self, hidden_size=None, ip_hidden_states_dim=None, ): super().__init__() self.norm_ip_q = RMSNorm(128, eps=1e-6) self.to_k_ip = nn.Linear(ip_hidden_states_dim, hidden_size) self.norm_ip_k = RMSNorm(128, eps=1e-6) self.to_v_ip = nn.Linear(ip_hidden_states_dim, hidden_size) def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, emb_dict={}, subject_emb_dict={}, *args, **kwargs, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) # IPadapter ip_hidden_states = self._get_ip_hidden_states( attn, query if encoder_hidden_states is not None else query[:, emb_dict['length_encoder_hidden_states']:], subject_emb_dict.get('ip_hidden_states', None) ) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) if ip_hidden_states is not None: hidden_states = hidden_states + ip_hidden_states * subject_emb_dict.get('scale', 1.0) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: if ip_hidden_states is not None: hidden_states[:, emb_dict['length_encoder_hidden_states']:] = \ hidden_states[:, emb_dict['length_encoder_hidden_states']:] + \ ip_hidden_states * subject_emb_dict.get('scale', 1.0) return hidden_states def _scaled_dot_product_attention(self, query, key, value, attention_mask=None, heads=None): query = rearrange(query, '(b h) l c -> b h l c', h=heads) key = rearrange(key, '(b h) l c -> b h l c', h=heads) value = rearrange(value, '(b h) l c -> b h l c', h=heads) hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False, attn_mask=None) hidden_states = rearrange(hidden_states, 'b h l c -> (b h) l c', h=heads) hidden_states = hidden_states.to(query) return hidden_states def _get_ip_hidden_states( self, attn, img_query, ip_hidden_states, ): if ip_hidden_states is None: return None if not hasattr(self, 'to_k_ip') or not hasattr(self, 'to_v_ip'): return None ip_query = self.norm_ip_q(rearrange(img_query, 'b l (h d) -> b h l d', h=attn.heads)) ip_query = rearrange(ip_query, 'b h l d -> (b h) l d') ip_key = self.to_k_ip(ip_hidden_states) ip_key = self.norm_ip_k(rearrange(ip_key, 'b l (h d) -> b h l d', h=attn.heads)) ip_key = rearrange(ip_key, 'b h l d -> (b h) l d') ip_value = self.to_v_ip(ip_hidden_states) ip_value = attn.head_to_batch_dim(ip_value) ip_hidden_states = self._scaled_dot_product_attention( ip_query.to(ip_value.dtype), ip_key.to(ip_value.dtype), ip_value, None, attn.heads) ip_hidden_states = ip_hidden_states.to(img_query.dtype) ip_hidden_states = attn.batch_to_head_dim(ip_hidden_states) return ip_hidden_states