search-by-image / app.py
Instantaneous1's picture
all
d357241
raw
history blame
9.4 kB
import streamlit as st
import torch
import os
import torchvision
import faiss
from PIL import Image
import traceback
from tqdm import tqdm
from PIL import ImageFile
from slugify import slugify
import opendatasets as od
import json
import argparse
from streamlit_cropper import st_cropper
from azure.storage.blob import BlobServiceClient
from torch.utils.data import Dataset, DataLoader
import torchvision.transforms
import numpy as np
import faiss.contrib.torch_utils
from efficientnet_pytorch import EfficientNet
BATCH_SIZE = 200
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ImageFile.LOAD_TRUNCATED_IMAGES = True
FOLDER = "images/"
NUM_TREES = 100
FEATURES = 1000
FILETYPES = [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".webp"]
LIBRARIES = [
"https://www.kaggle.com/datasets/athota1/caltech101",
"https://www.kaggle.com/datasets/gpiosenka/sports-classification",
"https://www.kaggle.com/datasets/puneet6060/intel-image-classification",
"https://www.kaggle.com/datasets/kkhandekar/image-dataset",
]
@st.cache_resource
def dl_embeddings():
"""dl pretrained embeddings in production environment instead of creating"""
# Connect to your Blob Storage account
if os.path.isfile(f"{slugify(FOLDER)}.index"):
print("Embeddings files already exists, skip download")
return
connect_str = st.secrets["connectionstring"]
blob_service_client = BlobServiceClient.from_connection_string(connect_str)
# Specify container and blob names
container_name = "imagessearch"
blob_name = f"{slugify(FOLDER)}.index"
# Get a reference to the blob
blob_client = blob_service_client.get_blob_client(
container=container_name, blob=blob_name
)
# Download the binary data
download_file_path = f"{slugify(FOLDER)}.index" # Path to save the downloaded file
with open(download_file_path, "wb") as download_file:
download_file.write(blob_client.download_blob().readall())
print(f"File downloaded to: {download_file_path}")
@st.cache_resource
def load_dataset():
with open("kaggle.json", "w+") as f:
json.dump(
{
"username": st.secrets["username"],
"key": st.secrets["key"],
},
f,
)
for lib in LIBRARIES:
od.download(
lib,
"images/",
)
# Load a pre-trained image feature extractor model
@st.cache_resource
def load_model():
"""Loads a pre-trained image feature extractor model."""
print("Loading pretrained model...")
model = EfficientNet.from_pretrained('efficientnet-b2')
model.eval() # Set model to evaluation mode
return model
# Get all file paths within a folder and its subfolders
@st.cache_data
def get_all_file_paths(folder_path):
"""Returns a list of all file paths within a folder and its subfolders."""
file_paths = []
for root, _, files in os.walk(folder_path):
for file in files:
if not file.lower().endswith(tuple(FILETYPES)):
continue
file_path = os.path.join(root, file)
file_paths.append(file_path)
print(f"Total {len(file_paths)} image files present")
return sorted(file_paths)
# Load all the images from file paths
@st.cache_data
def load_images(file_paths):
"""Load all the images from file paths."""
print("Loading images: ")
images = list()
for path in tqdm(file_paths):
try:
images.append(Image.open(path).resize([224, 224]))
except BaseException as e:
print("error loading ", path, e)
return images
def load_image(file_path):
"""Load all the images from file paths."""
try:
image = Image.open(file_path).resize([224, 224])
return image
except BaseException as e:
print("Error loading ", file_path, e)
# Function to preprocess images
def preprocess_image(image):
"""Preprocesses an image for feature extraction."""
if image.mode == "RGB": # Already has 3 channels
pass # No need to modify
elif image.mode == "L": # Grayscale image
image = image.convert("RGB") # Convert to 3-channel RGB
else: # Image has more than 3 channels
image = image.convert(
"RGB"
) # Convert to 3-channel RGB, discarding extra channels
preprocess = torchvision.transforms.Compose(
[
# torchvision.transforms.Resize(224), # Adjust for EfficientNet input size
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
),
]
)
return preprocess(image)
class ImageLoader(Dataset):
def __init__(self, image_files, transform, load_image):
self.transform = transform
self.load_image = load_image
self.image_files = image_files
def __len__(self):
return len(self.image_files)
def __getitem__(self, index):
return self.transform(self.load_image(self.image_files[index]))
# Extract features from a list of images
def extract_features(file_paths, model):
"""Extracts features from a list of images."""
print("Extracting features:")
loader = DataLoader(
ImageLoader(file_paths, transform=preprocess_image, load_image=load_image),
batch_size=BATCH_SIZE,
)
features = []
model = model.to(DEVICE)
with torch.no_grad():
for batch_idx, images in enumerate(tqdm(loader)):
images = images.to(DEVICE)
features.append(model(images))
return torch.cat(features)
# Build an Annoy index for efficient similarity search
def build_annoy_index(features):
"""Builds an Annoy index for efficient similarity search."""
print("Building faiss index:")
f = features[0].shape[0] # Feature dimensionality
index = faiss.IndexIDMap(faiss.IndexFlatIP(f))
features = features.cpu().detach().numpy()
faiss.normalize_L2(features)
index.add_with_ids(
features, np.array(range(len(features)))
) # Adjust num_trees for accuracy vs. speed trade-off
print("built faiss index:")
return index
# Perform reverse image search
def search_similar_images(query_image, num_results, f=FEATURES):
"""Finds similar images based on a query image feature."""
index = faiss.read_index(f"{slugify(FOLDER)}.index")
model = load_model().to(DEVICE)
# Extract features and search
proc_image = preprocess_image(query_image).unsqueeze(0).to(DEVICE)
query_feature = model(proc_image)
query_feature = query_feature.cpu().detach().numpy()
faiss.normalize_L2(query_feature)
distances, nearest_neighbors = index.search(
query_feature,
num_results,
)
return query_image, nearest_neighbors[0], distances[0]
@st.cache_data
def save_embedding(folder=FOLDER):
if os.path.isfile(f"{slugify(FOLDER)}.index"):
print("skipping recreating image embeddings")
return
print("Performing image embeddings")
model = load_model() # Load the model once
file_paths = get_all_file_paths(folder_path=folder)
# images = load_images(file_paths)
features = extract_features(file_paths, model)
index = build_annoy_index(features)
faiss.write_index(index, f"{slugify(FOLDER)}.index")
def display_image(idx, dist):
file_paths = get_all_file_paths(folder_path=FOLDER)
# print(file_paths[idx])
image = Image.open(file_paths[idx])
st.image(image.resize([256, 256]))
st.markdown("SimScore: " + str(round(dist, 2)))
# st.markdown(file_paths[idx])
if __name__ == "__main__":
# Main app logic
st.set_page_config(layout="wide")
st.title("Reverse Image Search App")
try:
load_dataset()
# download dev embeddings if not developement environment
ap = argparse.ArgumentParser()
ap.add_argument("--dev", action="store_true")
if not ap.parse_args().dev:
dl_embeddings()
save_embedding(FOLDER)
# File uploader
uploaded_file = st.file_uploader(
"Choose an image like a car, cat, dog, flower, fruits, bike, aeroplane, person",
type=FILETYPES,
)
n_matches = st.slider(
"Num of matches to be displayed", min_value=3, max_value=100, value=5
)
if uploaded_file is not None:
query_image = Image.open(uploaded_file).resize([256, 256])
cropped = st_cropper(query_image, default_coords=[10, 240, 10, 240])
query_image, nearest_neighbors, distances = search_similar_images(
cropped.resize([224, 224]), n_matches
)
st.subheader("Similar Images:")
cols = st.columns([1] * 5)
for i, (idx, dist) in enumerate(
zip(
*[
nearest_neighbors,
distances,
]
)
):
with cols[i % 5]:
# Display results
display_image(idx, dist)
else:
st.write("Please upload an image to start searching.")
except Exception as e:
traceback.print_exc()
print(e)
st.error("An error occurred: {}".format(e))