Spaces:
Running
Running
Instantaneous1
commited on
Commit
·
c456f09
0
Parent(s):
first commit
Browse files- .github/workflows/main.yaml +20 -0
- .gitignore +6 -0
- app.py +207 -0
- requirements.txt +7 -0
.github/workflows/main.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [main]
|
5 |
+
|
6 |
+
# to run this workflow manually from the Actions tab
|
7 |
+
workflow_dispatch:
|
8 |
+
|
9 |
+
jobs:
|
10 |
+
sync-to-hub:
|
11 |
+
runs-on: ubuntu-latest
|
12 |
+
steps:
|
13 |
+
- uses: actions/checkout@v3
|
14 |
+
with:
|
15 |
+
fetch-depth: 0
|
16 |
+
lfs: true
|
17 |
+
- name: Push to hub
|
18 |
+
env:
|
19 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
20 |
+
run: git push --force https://Instantaneous1:[email protected]/spaces/Instantaneous1/search-by-image main
|
.gitignore
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
env/
|
2 |
+
images/
|
3 |
+
__pycache__/
|
4 |
+
*.tree
|
5 |
+
secrets.toml
|
6 |
+
kaggle.json
|
app.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import torchvision
|
5 |
+
from annoy import AnnoyIndex
|
6 |
+
from PIL import Image
|
7 |
+
import traceback
|
8 |
+
from tqdm import tqdm
|
9 |
+
from PIL import ImageFile
|
10 |
+
from slugify import slugify
|
11 |
+
import opendatasets as od
|
12 |
+
import json
|
13 |
+
|
14 |
+
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
15 |
+
FOLDER = "images/"
|
16 |
+
NUM_TREES = 100
|
17 |
+
FEATURES = 1000
|
18 |
+
|
19 |
+
|
20 |
+
@st.cache_resource
|
21 |
+
def load_dataset():
|
22 |
+
with open("kaggle.json", "w+") as f:
|
23 |
+
json.dump(
|
24 |
+
{
|
25 |
+
"username": st.secrets["username"],
|
26 |
+
"key": st.secrets["key"],
|
27 |
+
},
|
28 |
+
f,
|
29 |
+
)
|
30 |
+
od.download(
|
31 |
+
"https://www.kaggle.com/datasets/kkhandekar/image-dataset",
|
32 |
+
"images/",
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
# Load a pre-trained image feature extractor model
|
37 |
+
@st.cache_resource
|
38 |
+
def load_model():
|
39 |
+
"""Loads a pre-trained image feature extractor model."""
|
40 |
+
model = torch.hub.load(
|
41 |
+
"NVIDIA/DeepLearningExamples:torchhub",
|
42 |
+
"nvidia_efficientnet_b0",
|
43 |
+
pretrained=True,
|
44 |
+
)
|
45 |
+
model.eval() # Set model to evaluation mode
|
46 |
+
return model
|
47 |
+
|
48 |
+
|
49 |
+
# Get all file paths within a folder and its subfolders
|
50 |
+
@st.cache_data
|
51 |
+
def get_all_file_paths(folder_path):
|
52 |
+
"""Returns a list of all file paths within a folder and its subfolders."""
|
53 |
+
file_paths = []
|
54 |
+
for root, _, files in os.walk(folder_path):
|
55 |
+
for file in files:
|
56 |
+
if not file.lower().endswith(
|
57 |
+
(".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")
|
58 |
+
):
|
59 |
+
continue
|
60 |
+
file_path = os.path.join(root, file)
|
61 |
+
file_paths.append(file_path)
|
62 |
+
return file_paths
|
63 |
+
|
64 |
+
|
65 |
+
# Load all the images from file paths
|
66 |
+
@st.cache_data
|
67 |
+
def load_images(file_paths):
|
68 |
+
"""Load all the images from file paths."""
|
69 |
+
print("Loading images: ")
|
70 |
+
images = list()
|
71 |
+
for path in tqdm(file_paths):
|
72 |
+
try:
|
73 |
+
images.append(Image.open(path).resize([224, 224]))
|
74 |
+
except BaseException as e:
|
75 |
+
print("error loading ", path, e)
|
76 |
+
return images
|
77 |
+
|
78 |
+
|
79 |
+
# Function to preprocess images
|
80 |
+
def preprocess_image(image):
|
81 |
+
"""Preprocesses an image for feature extraction."""
|
82 |
+
if image.mode == "RGB": # Already has 3 channels
|
83 |
+
pass # No need to modify
|
84 |
+
elif image.mode == "L": # Grayscale image
|
85 |
+
image = image.convert("RGB") # Convert to 3-channel RGB
|
86 |
+
else: # Image has more than 3 channels
|
87 |
+
image = image.convert(
|
88 |
+
"RGB"
|
89 |
+
) # Convert to 3-channel RGB, discarding extra channels
|
90 |
+
preprocess = torchvision.transforms.Compose(
|
91 |
+
[
|
92 |
+
# torchvision.transforms.Resize(224), # Adjust for EfficientNet input size
|
93 |
+
torchvision.transforms.CenterCrop(224),
|
94 |
+
torchvision.transforms.ToTensor(),
|
95 |
+
torchvision.transforms.Normalize(
|
96 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
97 |
+
),
|
98 |
+
]
|
99 |
+
)
|
100 |
+
return preprocess(image)
|
101 |
+
|
102 |
+
|
103 |
+
# Extract features from a list of images
|
104 |
+
def extract_features(images, model):
|
105 |
+
"""Extracts features from a list of images."""
|
106 |
+
print("Extracting features:")
|
107 |
+
features = []
|
108 |
+
for image in images:
|
109 |
+
with torch.no_grad():
|
110 |
+
feature = model(preprocess_image(image).unsqueeze(0)).squeeze(0)
|
111 |
+
features.append(feature.numpy())
|
112 |
+
return features
|
113 |
+
|
114 |
+
|
115 |
+
# Build an Annoy index for efficient similarity search
|
116 |
+
def build_annoy_index(features):
|
117 |
+
"""Builds an Annoy index for efficient similarity search."""
|
118 |
+
print("Building annoy index:")
|
119 |
+
f = features[0].shape[0] # Feature dimensionality
|
120 |
+
t = AnnoyIndex(f, "angular") # Use angular distance for image features
|
121 |
+
for i, feature in tqdm(enumerate(features)):
|
122 |
+
t.add_item(i, feature)
|
123 |
+
t.build(NUM_TREES) # Adjust num_trees for accuracy vs. speed trade-off
|
124 |
+
return t
|
125 |
+
|
126 |
+
|
127 |
+
# Perform reverse image search
|
128 |
+
def search_similar_images(uploaded_file, f=FEATURES, num_results=5):
|
129 |
+
"""Finds similar images based on a query image feature."""
|
130 |
+
index = AnnoyIndex(f, "angular")
|
131 |
+
index.load(f"{slugify(FOLDER)}.tree")
|
132 |
+
query_image = Image.open(uploaded_file)
|
133 |
+
model = load_model()
|
134 |
+
# Extract features and search
|
135 |
+
query_feature = (
|
136 |
+
model(preprocess_image(query_image).unsqueeze(0)).squeeze(0).detach().numpy()
|
137 |
+
)
|
138 |
+
nearest_neighbors, distances = index.get_nns_by_vector(
|
139 |
+
query_feature, num_results, include_distances=True
|
140 |
+
)
|
141 |
+
return query_image, nearest_neighbors, distances
|
142 |
+
|
143 |
+
|
144 |
+
@st.cache_data
|
145 |
+
def save_embedding(folder=FOLDER):
|
146 |
+
if os.path.isfile(f"{slugify(FOLDER)}.tree"):
|
147 |
+
return
|
148 |
+
model = load_model() # Load the model once
|
149 |
+
file_paths = get_all_file_paths(folder_path=folder)
|
150 |
+
images = load_images(file_paths)
|
151 |
+
features = extract_features(images, model)
|
152 |
+
index = build_annoy_index(features)
|
153 |
+
index.save(f"{slugify(FOLDER)}.tree")
|
154 |
+
|
155 |
+
|
156 |
+
def display_image(idx, dist):
|
157 |
+
file_paths = get_all_file_paths(folder_path=FOLDER)
|
158 |
+
image = Image.open(file_paths[idx])
|
159 |
+
st.image(image.resize([256, 256]))
|
160 |
+
st.markdown("SimScore: -" + str(round(dist, 2)))
|
161 |
+
# st.markdown(file_paths[idx])
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
# Main app logic
|
166 |
+
st.set_page_config(layout="wide")
|
167 |
+
st.title("Reverse Image Search App")
|
168 |
+
|
169 |
+
try:
|
170 |
+
load_dataset()
|
171 |
+
save_embedding(FOLDER)
|
172 |
+
|
173 |
+
# File uploader
|
174 |
+
uploaded_file = st.file_uploader(
|
175 |
+
"Choose an image like a car, cat, dog, flower, fruits, bike, aeroplane, person"
|
176 |
+
)
|
177 |
+
|
178 |
+
n_matches = st.slider(
|
179 |
+
"Num of matches to be displayed", min_value=3, max_value=100, value=5
|
180 |
+
)
|
181 |
+
|
182 |
+
if uploaded_file is not None:
|
183 |
+
query_image, nearest_neighbors, distances = search_similar_images(
|
184 |
+
uploaded_file, num_results=n_matches
|
185 |
+
)
|
186 |
+
|
187 |
+
st.image(query_image.resize([256, 256]), caption="Query Image", width=200)
|
188 |
+
st.subheader("Similar Images:")
|
189 |
+
cols = st.columns([1] * 5)
|
190 |
+
for i, (idx, dist) in enumerate(
|
191 |
+
zip(
|
192 |
+
*[
|
193 |
+
nearest_neighbors,
|
194 |
+
distances,
|
195 |
+
]
|
196 |
+
)
|
197 |
+
):
|
198 |
+
with cols[i % 5]:
|
199 |
+
# Display results
|
200 |
+
display_image(idx, dist)
|
201 |
+
else:
|
202 |
+
st.write("Please upload an image to start searching.")
|
203 |
+
|
204 |
+
except Exception as e:
|
205 |
+
traceback.print_exc()
|
206 |
+
print(e)
|
207 |
+
st.error("An error occurred: {}".format(e))
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
annoy
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
streamlit
|
5 |
+
tqdm
|
6 |
+
python-slugify
|
7 |
+
opendatasets
|