Instantaneous1 commited on
Commit
faf8b3f
1 Parent(s): 71c9ac0
Files changed (3) hide show
  1. README.md +64 -1
  2. UI.png +0 -0
  3. app.py +5 -4
README.md CHANGED
@@ -9,4 +9,67 @@ app_file: app.py
9
  pinned: false
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  pinned: false
10
  ---
11
 
12
+ # Image Reverse Search Web App
13
+
14
+ ## Description
15
+
16
+ ### A very fast reverse image search webapp in streamlit using NVIDIA's EfficientNet and Spotify's Annoy library over atleast 7000 images.
17
+
18
+ Upload a picture, and AI powered by deep learning will instantly show you visually related matches. Explore and discover connections through the magic of image recognition.
19
+
20
+ ## Demo
21
+
22
+ Experience the app in action right in your browser: https://huggingface.co/spaces/Instantaneous1/search-by-image
23
+
24
+ ![Demo](UI.png)
25
+
26
+ ## Key Features
27
+
28
+ - Upload a query image to find visually similar images in the dataset.
29
+ - Explore retrieved images to discover related content.
30
+ - Adjust the number of matches displayed for visual comparisons.
31
+ - Utilizes a pre-trained image feature extractor model (EfficientNet-b0) for accurate image similarity.
32
+ - Employs Annoy index for fast approximate nearest neighbor search.
33
+ - Offers a user-friendly interface powered by Streamlit.
34
+
35
+ ## Getting Started
36
+
37
+ 1. Clone this repository:
38
+
39
+ ```bash
40
+ git clone [[email protected]:sayan1999/search-by-image.git]([email protected]:sayan1999/search-by-image.git)
41
+ ```
42
+
43
+ 2. Install required libraries:
44
+
45
+ ```bash
46
+ pip install -r requirements.txt
47
+ ```
48
+
49
+ 3. Run the Streamlit app:
50
+
51
+ ```bash
52
+ streamlit run app.py
53
+ ```
54
+
55
+ 4. Access the app in your web browser (usually at http://localhost:8501).
56
+
57
+ ## Technology Stack
58
+
59
+ Streamlit: Framework for building and deploying web apps in Python.
60
+ Torch: Powerful deep learning framework.
61
+ OpenDatasets: Library for convenient dataset downloading.
62
+ Annoy: Library for fast approximate nearest neighbor search.
63
+ NVIDIA EfficientNet-b0: Pre-trained image classification model for feature extraction.
64
+
65
+ ## Usage
66
+
67
+ 1. Access the app in your web browser at the provided link (usually http://localhost:8501).
68
+ 2. Click the "Upload Image" button and select an image from your computer.
69
+ 3. Optionally, adjust the number of matches using the slider.
70
+ 4. Click the "Search" button to initiate the reverse image search.
71
+ 5. The app will display the query image along with the retrieved similar images.
72
+
73
+ ## Dataset
74
+
75
+ [https://www.kaggle.com/datasets/kkhandekar/image-dataset](https://www.kaggle.com/datasets/kkhandekar/image-dataset)
UI.png ADDED
app.py CHANGED
@@ -15,6 +15,7 @@ ImageFile.LOAD_TRUNCATED_IMAGES = True
15
  FOLDER = "images/"
16
  NUM_TREES = 100
17
  FEATURES = 1000
 
18
 
19
 
20
  @st.cache_resource
@@ -53,12 +54,11 @@ def get_all_file_paths(folder_path):
53
  file_paths = []
54
  for root, _, files in os.walk(folder_path):
55
  for file in files:
56
- if not file.lower().endswith(
57
- (".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif")
58
- ):
59
  continue
60
  file_path = os.path.join(root, file)
61
  file_paths.append(file_path)
 
62
  return file_paths
63
 
64
 
@@ -172,7 +172,8 @@ if __name__ == "__main__":
172
 
173
  # File uploader
174
  uploaded_file = st.file_uploader(
175
- "Choose an image like a car, cat, dog, flower, fruits, bike, aeroplane, person"
 
176
  )
177
 
178
  n_matches = st.slider(
 
15
  FOLDER = "images/"
16
  NUM_TREES = 100
17
  FEATURES = 1000
18
+ FILETYPES = [".png", ".jpg", ".jpeg", ".tiff", ".bmp"]
19
 
20
 
21
  @st.cache_resource
 
54
  file_paths = []
55
  for root, _, files in os.walk(folder_path):
56
  for file in files:
57
+ if not file.lower().endswith(tuple(FILETYPES)):
 
 
58
  continue
59
  file_path = os.path.join(root, file)
60
  file_paths.append(file_path)
61
+ print(f"Total {len(file_paths)} image files present")
62
  return file_paths
63
 
64
 
 
172
 
173
  # File uploader
174
  uploaded_file = st.file_uploader(
175
+ "Choose an image like a car, cat, dog, flower, fruits, bike, aeroplane, person",
176
+ type=FILETYPES,
177
  )
178
 
179
  n_matches = st.slider(