import streamlit as st import torch import os import torchvision import faiss from PIL import Image import traceback from tqdm import tqdm from PIL import ImageFile from slugify import slugify import opendatasets as od import json import argparse from streamlit_cropper import st_cropper from azure.storage.blob import BlobServiceClient from torch.utils.data import Dataset, DataLoader import torchvision.transforms import numpy as np import faiss.contrib.torch_utils BATCH_SIZE = 200 DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") ImageFile.LOAD_TRUNCATED_IMAGES = True FOLDER = "images/" NUM_TREES = 100 FEATURES = 1000 FILETYPES = [".png", ".jpg", ".jpeg", ".tiff", ".bmp"] LIBRARIES = [ "https://www.kaggle.com/datasets/athota1/caltech101", "https://www.kaggle.com/datasets/gpiosenka/sports-classification", "https://www.kaggle.com/datasets/puneet6060/intel-image-classification", "https://www.kaggle.com/datasets/kkhandekar/image-dataset", ] @st.cache_resource def dl_embeddings(): """dl pretrained embeddings in production environment instead of creating""" # Connect to your Blob Storage account if os.path.isfile(f"{slugify(FOLDER)}.index"): print("Embeddings files already exists, skip download") return connect_str = st.secrets["connectionstring"] blob_service_client = BlobServiceClient.from_connection_string(connect_str) # Specify container and blob names container_name = "imagessearch" blob_name = f"{slugify(FOLDER)}.index" # Get a reference to the blob blob_client = blob_service_client.get_blob_client( container=container_name, blob=blob_name ) # Download the binary data download_file_path = f"{slugify(FOLDER)}.index" # Path to save the downloaded file with open(download_file_path, "wb") as download_file: download_file.write(blob_client.download_blob().readall()) print(f"File downloaded to: {download_file_path}") @st.cache_resource def load_dataset(): with open("kaggle.json", "w+") as f: json.dump( { "username": st.secrets["username"], "key": st.secrets["key"], }, f, ) for lib in LIBRARIES: od.download( lib, "images/", ) # Load a pre-trained image feature extractor model @st.cache_resource def load_model(): """Loads a pre-trained image feature extractor model.""" print("Loading pretrained model...") model = torch.hub.load( "NVIDIA/DeepLearningExamples:torchhub", "nvidia_efficientnet_b0", pretrained=True, ) model.eval() # Set model to evaluation mode return model # Get all file paths within a folder and its subfolders @st.cache_data def get_all_file_paths(folder_path): """Returns a list of all file paths within a folder and its subfolders.""" file_paths = [] for root, _, files in os.walk(folder_path): for file in files: if not file.lower().endswith(tuple(FILETYPES)): continue file_path = os.path.join(root, file) file_paths.append(file_path) print(f"Total {len(file_paths)} image files present") return sorted(file_paths) # Load all the images from file paths @st.cache_data def load_images(file_paths): """Load all the images from file paths.""" print("Loading images: ") images = list() for path in tqdm(file_paths): try: images.append(Image.open(path).resize([224, 224])) except BaseException as e: print("error loading ", path, e) return images def load_image(file_path): """Load all the images from file paths.""" try: image = Image.open(file_path).resize([224, 224]) return image except BaseException as e: print("Error loading ", file_path, e) # Function to preprocess images def preprocess_image(image): """Preprocesses an image for feature extraction.""" if image.mode == "RGB": # Already has 3 channels pass # No need to modify elif image.mode == "L": # Grayscale image image = image.convert("RGB") # Convert to 3-channel RGB else: # Image has more than 3 channels image = image.convert( "RGB" ) # Convert to 3-channel RGB, discarding extra channels preprocess = torchvision.transforms.Compose( [ # torchvision.transforms.Resize(224), # Adjust for EfficientNet input size torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) return preprocess(image) class ImageLoader(Dataset): def __init__(self, image_files, transform, load_image): self.transform = transform self.load_image = load_image self.image_files = image_files def __len__(self): return len(self.image_files) def __getitem__(self, index): return self.transform(self.load_image(self.image_files[index])) # Extract features from a list of images def extract_features(file_paths, model): """Extracts features from a list of images.""" print("Extracting features:") loader = DataLoader( ImageLoader(file_paths, transform=preprocess_image, load_image=load_image), batch_size=BATCH_SIZE, ) features = [] model = model.to(DEVICE) with torch.no_grad(): for batch_idx, images in enumerate(tqdm(loader)): images = images.to(DEVICE) features.append(model(images)) return torch.cat(features) # Build an Annoy index for efficient similarity search def build_annoy_index(features): """Builds an Annoy index for efficient similarity search.""" print("Building faiss index:") f = features[0].shape[0] # Feature dimensionality index = faiss.IndexIDMap(faiss.IndexFlatIP(f)) index.add_with_ids( features.cpu().detach().numpy(), np.array(range(len(features))) ) # Adjust num_trees for accuracy vs. speed trade-off print("built faiss index:") return index # Perform reverse image search def search_similar_images(query_image, num_results, f=FEATURES): """Finds similar images based on a query image feature.""" index = faiss.read_index(f"{slugify(FOLDER)}.index") model = load_model().to(DEVICE) # Extract features and search proc_image = preprocess_image(query_image).unsqueeze(0).to(DEVICE) query_feature = model(proc_image) query_feature = query_feature.cpu().detach().numpy() distances, nearest_neighbors = index.search( query_feature, num_results, ) return query_image, nearest_neighbors[0], distances[0] @st.cache_data def save_embedding(folder=FOLDER): if os.path.isfile(f"{slugify(FOLDER)}.index"): print("skipping recreating image embeddings") return print("Performing image embeddings") model = load_model() # Load the model once file_paths = get_all_file_paths(folder_path=folder) # images = load_images(file_paths) features = extract_features(file_paths, model) index = build_annoy_index(features) faiss.write_index(index, f"{slugify(FOLDER)}.index") def display_image(idx, dist): file_paths = get_all_file_paths(folder_path=FOLDER) image = Image.open(file_paths[idx]) st.image(image.resize([256, 256])) st.markdown("SimScore: -" + str(round(dist, 2))) # st.markdown(file_paths[idx]) if __name__ == "__main__": # Main app logic st.set_page_config(layout="wide") st.title("Reverse Image Search App") try: load_dataset() # download dev embeddings if not developement environment ap = argparse.ArgumentParser() ap.add_argument("--dev", action="store_true") if not ap.parse_args().dev: dl_embeddings() save_embedding(FOLDER) # File uploader uploaded_file = st.file_uploader( "Choose an image like a car, cat, dog, flower, fruits, bike, aeroplane, person", type=FILETYPES, ) n_matches = st.slider( "Num of matches to be displayed", min_value=3, max_value=100, value=5 ) if uploaded_file is not None: query_image = Image.open(uploaded_file) cropped = st_cropper(query_image) query_image, nearest_neighbors, distances = search_similar_images( cropped.resize([256, 256]), n_matches ) st.subheader("Similar Images:") cols = st.columns([1] * 5) for i, (idx, dist) in enumerate( zip( *[ nearest_neighbors, distances, ] ) ): with cols[i % 5]: # Display results display_image(idx, dist) else: st.write("Please upload an image to start searching.") except Exception as e: traceback.print_exc() print(e) st.error("An error occurred: {}".format(e))