Revert
Browse files
app.py
CHANGED
@@ -1,5 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
x = st.slider('Select a value')
|
4 |
-
st.write(x, 'squared is', x *x)
|
5 |
|
|
|
|
|
|
1 |
+
import os.path
|
2 |
+
import re
|
3 |
+
import torch
|
4 |
+
import time
|
5 |
+
import tempfile
|
6 |
+
|
7 |
import streamlit as st
|
8 |
+
from training.zoo.classifiers import DeepFakeClassifier
|
9 |
+
from kernel_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video_set
|
10 |
+
|
11 |
+
|
12 |
+
def load_model():
|
13 |
+
path = 'weights/final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23'
|
14 |
+
model = DeepFakeClassifier(encoder="tf_efficientnet_b7_ns")
|
15 |
+
print("loading state dict {}".format(path))
|
16 |
+
checkpoint = torch.load(path, map_location="cpu")
|
17 |
+
state_dict = checkpoint.get("state_dict", checkpoint)
|
18 |
+
model.load_state_dict(
|
19 |
+
{re.sub("^module.", "", k): v for k, v in state_dict.items()},
|
20 |
+
strict=True)
|
21 |
+
model.eval()
|
22 |
+
del checkpoint
|
23 |
+
return model
|
24 |
+
|
25 |
+
|
26 |
+
def write_bytesio_to_file(filename, bytesio):
|
27 |
+
with open(filename, "wb") as outfile:
|
28 |
+
outfile.write(bytesio.getbuffer())
|
29 |
+
|
30 |
+
|
31 |
+
def load_video():
|
32 |
+
uploaded_file = st.file_uploader(label='Pick a video (mp4) file to test')
|
33 |
+
if uploaded_file is not None:
|
34 |
+
video_data = uploaded_file.getvalue()
|
35 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
36 |
+
tfile.write(video_data)
|
37 |
+
return tfile.name
|
38 |
+
else:
|
39 |
+
return None
|
40 |
+
|
41 |
+
|
42 |
+
def inference(model, test_video):
|
43 |
+
frames_per_video = 32
|
44 |
+
video_reader = VideoReader()
|
45 |
+
video_read_fn = lambda x: video_reader.read_frames(
|
46 |
+
x, num_frames=frames_per_video)
|
47 |
+
face_extractor = FaceExtractor(video_read_fn)
|
48 |
+
input_size = 380
|
49 |
+
strategy = confident_strategy
|
50 |
+
|
51 |
+
test_videos = [test_video]
|
52 |
+
print("Predicting {} videos".format(len(test_videos)))
|
53 |
+
models = [model]
|
54 |
+
predictions = predict_on_video_set(face_extractor=face_extractor,
|
55 |
+
input_size=input_size, models=models,
|
56 |
+
strategy=strategy,
|
57 |
+
frames_per_video=frames_per_video,
|
58 |
+
videos=test_videos,
|
59 |
+
num_workers=6, test_dir="test_video")
|
60 |
+
st.write("Prediction: ", predictions[0])
|
61 |
+
|
62 |
+
|
63 |
+
def main():
|
64 |
+
st.title('Deepfake video inference demo')
|
65 |
+
model = load_model()
|
66 |
+
video_data_path = load_video()
|
67 |
+
|
68 |
+
if video_data_path is not None and os.path.exists(video_data_path):
|
69 |
+
st.video(video_data_path)
|
70 |
+
|
71 |
+
result = st.button('Run on video')
|
72 |
+
if result:
|
73 |
+
st.write("Inference on video...")
|
74 |
+
stime = time.time()
|
75 |
+
inference(model, video_data_path)
|
76 |
+
st.write("Elapsed time: ", time.time() - stime, " seconds")
|
77 |
|
|
|
|
|
78 |
|
79 |
+
if __name__ == '__main__':
|
80 |
+
main()
|