Intae commited on
Commit
ad5c7cd
·
1 Parent(s): 5cf4e2d
Files changed (1) hide show
  1. app.py +77 -2
app.py CHANGED
@@ -1,5 +1,80 @@
 
 
 
 
 
 
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x *x)
5
 
 
 
 
1
+ import os.path
2
+ import re
3
+ import torch
4
+ import time
5
+ import tempfile
6
+
7
  import streamlit as st
8
+ from training.zoo.classifiers import DeepFakeClassifier
9
+ from kernel_utils import VideoReader, FaceExtractor, confident_strategy, predict_on_video_set
10
+
11
+
12
+ def load_model():
13
+ path = 'weights/final_999_DeepFakeClassifier_tf_efficientnet_b7_ns_0_23'
14
+ model = DeepFakeClassifier(encoder="tf_efficientnet_b7_ns")
15
+ print("loading state dict {}".format(path))
16
+ checkpoint = torch.load(path, map_location="cpu")
17
+ state_dict = checkpoint.get("state_dict", checkpoint)
18
+ model.load_state_dict(
19
+ {re.sub("^module.", "", k): v for k, v in state_dict.items()},
20
+ strict=True)
21
+ model.eval()
22
+ del checkpoint
23
+ return model
24
+
25
+
26
+ def write_bytesio_to_file(filename, bytesio):
27
+ with open(filename, "wb") as outfile:
28
+ outfile.write(bytesio.getbuffer())
29
+
30
+
31
+ def load_video():
32
+ uploaded_file = st.file_uploader(label='Pick a video (mp4) file to test')
33
+ if uploaded_file is not None:
34
+ video_data = uploaded_file.getvalue()
35
+ tfile = tempfile.NamedTemporaryFile(delete=False)
36
+ tfile.write(video_data)
37
+ return tfile.name
38
+ else:
39
+ return None
40
+
41
+
42
+ def inference(model, test_video):
43
+ frames_per_video = 32
44
+ video_reader = VideoReader()
45
+ video_read_fn = lambda x: video_reader.read_frames(
46
+ x, num_frames=frames_per_video)
47
+ face_extractor = FaceExtractor(video_read_fn)
48
+ input_size = 380
49
+ strategy = confident_strategy
50
+
51
+ test_videos = [test_video]
52
+ print("Predicting {} videos".format(len(test_videos)))
53
+ models = [model]
54
+ predictions = predict_on_video_set(face_extractor=face_extractor,
55
+ input_size=input_size, models=models,
56
+ strategy=strategy,
57
+ frames_per_video=frames_per_video,
58
+ videos=test_videos,
59
+ num_workers=6, test_dir="test_video")
60
+ st.write("Prediction: ", predictions[0])
61
+
62
+
63
+ def main():
64
+ st.title('Deepfake video inference demo')
65
+ model = load_model()
66
+ video_data_path = load_video()
67
+
68
+ if video_data_path is not None and os.path.exists(video_data_path):
69
+ st.video(video_data_path)
70
+
71
+ result = st.button('Run on video')
72
+ if result:
73
+ st.write("Inference on video...")
74
+ stime = time.time()
75
+ inference(model, video_data_path)
76
+ st.write("Elapsed time: ", time.time() - stime, " seconds")
77
 
 
 
78
 
79
+ if __name__ == '__main__':
80
+ main()