File size: 5,682 Bytes
0c348ce
 
 
 
 
 
 
 
 
ccbe0e4
5194ae2
5458a97
5194ae2
 
5458a97
5194ae2
299cb77
5194ae2
 
 
 
 
75118d3
5194ae2
 
 
5458a97
5194ae2
75118d3
 
 
 
5194ae2
 
 
 
 
75118d3
5194ae2
 
 
15cb7d0
5194ae2
8f50f2d
5194ae2
 
 
 
 
8f50f2d
5194ae2
 
 
c0621a4
5194ae2
 
 
17277f9
5194ae2
 
 
15cb7d0
5194ae2
 
dc2bff9
5194ae2
17277f9
30a7347
17277f9
 
 
30a7347
17277f9
7580608
435c65b
c1e9404
 
435c65b
17277f9
c1e9404
435c65b
17277f9
c1e9404
 
17277f9
 
 
 
 
435c65b
c1e9404
435c65b
17277f9
 
435c65b
17277f9
 
 
 
 
c1e9404
435c65b
 
 
 
 
17277f9
 
 
 
 
 
 
 
 
 
435c65b
c1e9404
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
title: README
emoji: 🐢
colorFrom: purple
colorTo: gray
sdk: static
pinned: false
---

<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
	<p class="lg:col-span-3">
	  Intel and Hugging Face are building powerful optimization tools to accelerate training and inference with Transformers.
	</p>
	<a
		href="https://huggingface.co/blog/intel"
		class="block overflow-hidden group"
	>
		<div
			class="w-full h-40 object-cover mb-10 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
		>
			<img
				alt=""
				src="https://cdn-media.huggingface.co/marketing/intel-page/Intel-Hugging-Face-alt-version2-org-page.png"
				class="w-40"
			/>
		</div>
		<div class="underline">Learn more about Hugging Face collaboration with Intel AI</div>
	</a>
	<a
		href="https://github.com/huggingface/optimum"
		class="block overflow-hidden group"
	>
		<div
			class="w-full h-40 object-cover mb-10 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
		>
			<img
				alt=""
				src="/blog/assets/25_hardware_partners_program/carbon_inc_quantizer.png"
				class="w-40"
			/>
		</div>
		<div class="underline">Quantize Transformers with Intel® Neural Compressor and Optimum</div>
	</a>
	<a href="https://huggingface.co/blog/generative-ai-models-on-intel-cpu" class="block overflow-hidden group">
		<div
			class="w-full h-40 object-cover mb-10 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
		>
			<img
				alt=""
				src="/blog/assets/143_q8chat/thumbnail.png"
				class="w-40"
			/>
		</div>
		<div class="underline">Quantizing 7B LLM on Intel CPU</div>
	</a>
	<div class="lg:col-span-3">
		<p class="mb-2">
	    Intel optimizes widely adopted and innovative AI software 
	    tools, frameworks, and libraries for Intel® architecture. Whether 
	    you are computing locally or deploying AI applications on a massive 
	    scale, your organization can achieve peak performance with AI 
	    software optimized for Intel® Xeon® Scalable platforms.
		</p>
		<p class="mb-2">
	    Intel’s engineering collaboration with Hugging Face offers state-of-the-art hardware and software acceleration to train, fine-tune and predict with Transformers. 
	  </p>
	  <h3>Useful Resources:</h3>
	  <ul>
	  	<li class="ml-6"><a href="https://huggingface.co/hardware/intel" class="underline" data-ga-category="intel-org" data-ga-action="clicked partner page" data-ga-label="partner page">Intel AI + Hugging Face partner page</a></li>
	  	<li class="ml-6"><a href="https://github.com/IntelAI" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel ai github" data-ga-label="intel ai github">Intel AI GitHub</a></li>
        <li class="ml-6"><a href="https://www.intel.com/content/www/us/en/developer/partner/hugging-face.html" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel partner page" data-ga-label="intel partner page">Developer Resources from Intel and Hugging Face</a></li>
	  </ul>
      <p>&nbsp;</p>
	</div>
    <div class="lg:col-span-3">
      <h1>Get Started</h1>
      <h3>1. Intel Acceleration Libraries</h3>
	  <p class="mb-2">
	    To get started with Intel hardware and software optimizations, download and install the Optimum Intel 
        and Intel® Extension for Transformers libraries. Follow these documents to learn how to install and use these libraries:
	  </p>
	  <ul>
	  	<li class="ml-6"><a href="https://github.com/huggingface/optimum-intel#readme" class="underline" data-ga-category="intel-org" data-ga-action="clicked optimum intel" data-ga-label="optimum intel">🤗 Optimum Intel library</a></li>
	  	<li class="ml-6"><a href="https://github.com/intel/intel-extension-for-transformers#readme" class="underline" data-ga-category="intel-org" data-ga-action="clicked intel extension for transformers" data-ga-label="intel extension for transformers">Intel® Extension for Transformers</a></li>
	  </ul>
      <p class="mb-2">
        The Optimum Intel library provides primarily hardware acceleration, while the Intel® Extension 
        for Transformers is focused more on software accleration. Both should be present to achieve ideal
        performance and productivity gains in transfer learning and fine-tuning with Hugging Face.
      </p>
      <h3>2. Find Your Model</h3>
      <p class="mb-2">
        Next, find your desired model (and dataset) by using the search box at the top-left of Hugging Face’s website. 
        Add “intel” to your search to narrow your search to models pretrained by Intel.
      </p>
      <img
        alt=""
        src="https://huggingface.co/spaces/Intel/README/resolve/main/hf-model_search.png"
        style="margin:auto;transform:scale(0.8);"
      />
      <h3>3. Read Through the Demo, Dataset, and Quick-Start Commands</h3>
      <p class="mb-2">
        On the model’s page (called a “Model Card”) you will find description and usage information, an embedded 
        inferencing demo, and the associated dataset. In the upper-right of your screen, click “Use in Transformers” 
        for helpful code hints on how to import the model to your own workspace with an established Hugging Face pipeline and tokenizer.
      </p>
      <img
        alt=""
        src="https://huggingface.co/spaces/Intel/README/resolve/main/hf-use_transformers.png"
        style="margin:auto;transform:scale(0.8);"
      />
      <img
        alt=""
        src="https://huggingface.co/spaces/Intel/README/resolve/main/hf-quickstart.png"
        style="margin:auto;transform:scale(0.8);"
      />
	</div>
</div>