Spaces:
Running
Running
Update Space (evaluate main: e5933120)
Browse files- README.md +59 -1
- adversarial_glue.py +202 -0
- requirements.txt +1 -0
README.md
CHANGED
@@ -8,4 +8,62 @@ pinned: false
|
|
8 |
license: apache-2.0
|
9 |
---
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
license: apache-2.0
|
9 |
---
|
10 |
|
11 |
+
# Adversarial GLUE Evaluation Suite
|
12 |
+
|
13 |
+
## Description
|
14 |
+
|
15 |
+
This evaluation suite compares the GLUE results with Adversarial GLUE (AdvGLUE), a multi-task benchmark that evaluates modern large-scale language models robustness with respect to various types of adversarial attacks.
|
16 |
+
|
17 |
+
## How to use
|
18 |
+
|
19 |
+
This suite requires installations of the following fork [IntelAI/evaluate](https://github.com/IntelAI/evaluate/tree/develop).
|
20 |
+
|
21 |
+
After installation, there are two steps: (1) loading the Adversarial GLUE suite; and (2) calculating the metric.
|
22 |
+
|
23 |
+
1. **Loading the relevant GLUE metric** : This suite loads an evaluation suite subtasks for the following tasks on both AdvGLUE and GLUE datasets: `sst2`, `mnli`, `qnli`, `rte`, and `qqp`.
|
24 |
+
|
25 |
+
More information about the different subsets of the GLUE dataset can be found on the [GLUE dataset page](https://huggingface.co/datasets/glue).
|
26 |
+
|
27 |
+
2. **Calculating the metric**: the metric takes one input: the name of the model or pipeline
|
28 |
+
|
29 |
+
|
30 |
+
```python
|
31 |
+
from evaluate import EvaluationSuite
|
32 |
+
|
33 |
+
suite = EvaluationSuite.load('intel/adversarial_glue')
|
34 |
+
mc_results, = suite.run("gpt2")
|
35 |
+
```
|
36 |
+
|
37 |
+
## Output results
|
38 |
+
|
39 |
+
The output of the metric depends on the GLUE subset chosen, consisting of a dictionary that contains one or several of the following metrics:
|
40 |
+
|
41 |
+
`accuracy`: the proportion of correct predictions among the total number of cases processed, with a range between 0 and 1 (see [accuracy](https://huggingface.co/metrics/accuracy) for more information).
|
42 |
+
|
43 |
+
|
44 |
+
### Values from popular papers
|
45 |
+
|
46 |
+
The [original GLUE paper](https://huggingface.co/datasets/glue) reported average scores ranging from 58% to 64%, depending on the model used (with all evaluation values scaled by 100 to make computing the average possible).
|
47 |
+
|
48 |
+
For more recent model performance, see the [dataset leaderboard](https://paperswithcode.com/dataset/glue).
|
49 |
+
|
50 |
+
## Examples
|
51 |
+
|
52 |
+
For full example see [HF Evaluate Adversarial Attacks.ipynb](https://github.com/IntelAI/evaluate/blob/develop/notebooks/HF%20Evaluate%20Adversarial%20Attacks.ipynb)
|
53 |
+
|
54 |
+
## Limitations and bias
|
55 |
+
This metric works only with datasets that have the same format as the [GLUE dataset](https://huggingface.co/datasets/glue).
|
56 |
+
|
57 |
+
While the GLUE dataset is meant to represent "General Language Understanding", the tasks represented in it are not necessarily representative of language understanding, and should not be interpreted as such.
|
58 |
+
|
59 |
+
## Citation
|
60 |
+
|
61 |
+
```bibtex
|
62 |
+
@inproceedings{wang2021adversarial,
|
63 |
+
title={Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of Language Models},
|
64 |
+
author={Wang, Boxin and Xu, Chejian and Wang, Shuohang and Gan, Zhe and Cheng, Yu and Gao, Jianfeng and Awadallah, Ahmed Hassan and Li, Bo},
|
65 |
+
booktitle={Advances in Neural Information Processing Systems},
|
66 |
+
year={2021}
|
67 |
+
}
|
68 |
+
```
|
69 |
+
|
adversarial_glue.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from evaluate.evaluation_suite import SubTask
|
2 |
+
from evaluate.visualization import radar_plot
|
3 |
+
|
4 |
+
from intel_evaluate_extension.evaluation_suite.model_card_suite import ModelCardSuiteResults
|
5 |
+
|
6 |
+
_HEADER = "GLUE/AdvGlue Evaluation Results"
|
7 |
+
|
8 |
+
_DESCRIPTION = """
|
9 |
+
The suite compares the GLUE results with Adversarial GLUE (AdvGLUE), a
|
10 |
+
multi-task benchmark that tests the vulnerability of modern large-scale
|
11 |
+
language models againstvarious adversarial attacks."""
|
12 |
+
|
13 |
+
|
14 |
+
class Suite(ModelCardSuiteResults):
|
15 |
+
def __init__(self, name):
|
16 |
+
super().__init__(name)
|
17 |
+
self.result_keys = ["accuracy", "f1"]
|
18 |
+
self.preprocessor = lambda x: {"text": x["text"].lower()}
|
19 |
+
self.suite = [
|
20 |
+
SubTask(
|
21 |
+
task_type="text-classification",
|
22 |
+
data="glue",
|
23 |
+
subset="sst2",
|
24 |
+
split="validation[:5]",
|
25 |
+
args_for_task={
|
26 |
+
"metric": "glue",
|
27 |
+
"input_column": "sentence",
|
28 |
+
"label_column": "label",
|
29 |
+
"config_name": "sst2",
|
30 |
+
"label_mapping": {
|
31 |
+
"LABEL_0": 0.0,
|
32 |
+
"LABEL_1": 1.0
|
33 |
+
}
|
34 |
+
}
|
35 |
+
),
|
36 |
+
SubTask(
|
37 |
+
task_type="text-classification",
|
38 |
+
data="adv_glue",
|
39 |
+
subset="adv_sst2",
|
40 |
+
split="validation[:5]",
|
41 |
+
args_for_task={
|
42 |
+
"metric": "glue",
|
43 |
+
"input_column": "sentence",
|
44 |
+
"label_column": "label",
|
45 |
+
"config_name": "sst2",
|
46 |
+
"label_mapping": {
|
47 |
+
"LABEL_0": 0.0,
|
48 |
+
"LABEL_1": 1.0
|
49 |
+
}
|
50 |
+
}
|
51 |
+
),
|
52 |
+
SubTask(
|
53 |
+
task_type="text-classification",
|
54 |
+
data="glue",
|
55 |
+
subset="qqp",
|
56 |
+
split="validation[:5]",
|
57 |
+
|
58 |
+
args_for_task={
|
59 |
+
"metric": "glue",
|
60 |
+
"input_column": "question1",
|
61 |
+
"second_input_column": "question2",
|
62 |
+
"label_column": "label",
|
63 |
+
"config_name": "qqp",
|
64 |
+
"label_mapping": {
|
65 |
+
"LABEL_0": 0,
|
66 |
+
"LABEL_1": 1
|
67 |
+
}
|
68 |
+
}
|
69 |
+
),
|
70 |
+
SubTask(
|
71 |
+
task_type="text-classification",
|
72 |
+
data="adv_glue",
|
73 |
+
subset="adv_qqp",
|
74 |
+
split="validation[:5]",
|
75 |
+
args_for_task={
|
76 |
+
"metric": "glue",
|
77 |
+
"input_column": "question1",
|
78 |
+
"second_input_column": "question2",
|
79 |
+
"label_column": "label",
|
80 |
+
"config_name": "qqp",
|
81 |
+
"label_mapping": {
|
82 |
+
"LABEL_0": 0,
|
83 |
+
"LABEL_1": 1
|
84 |
+
}
|
85 |
+
}
|
86 |
+
),
|
87 |
+
SubTask(
|
88 |
+
task_type="text-classification",
|
89 |
+
data="glue",
|
90 |
+
subset="qnli",
|
91 |
+
split="validation[:5]",
|
92 |
+
args_for_task={
|
93 |
+
"metric": "glue",
|
94 |
+
"input_column": "question",
|
95 |
+
"second_input_column": "sentence",
|
96 |
+
"label_column": "label",
|
97 |
+
"config_name": "qnli",
|
98 |
+
"label_mapping": {
|
99 |
+
"LABEL_0": 0,
|
100 |
+
"LABEL_1": 1
|
101 |
+
}
|
102 |
+
}
|
103 |
+
),
|
104 |
+
SubTask(
|
105 |
+
task_type="text-classification",
|
106 |
+
data="adv_glue",
|
107 |
+
subset="adv_qnli",
|
108 |
+
split="validation[:5]",
|
109 |
+
args_for_task={
|
110 |
+
"metric": "glue",
|
111 |
+
"input_column": "question",
|
112 |
+
"second_input_column": "sentence",
|
113 |
+
"label_column": "label",
|
114 |
+
"config_name": "qnli",
|
115 |
+
"label_mapping": {
|
116 |
+
"LABEL_0": 0,
|
117 |
+
"LABEL_1": 1
|
118 |
+
}
|
119 |
+
}
|
120 |
+
),
|
121 |
+
SubTask(
|
122 |
+
task_type="text-classification",
|
123 |
+
data="glue",
|
124 |
+
subset="rte",
|
125 |
+
split="validation[:5]",
|
126 |
+
args_for_task={
|
127 |
+
"metric": "glue",
|
128 |
+
"input_column": "sentence1",
|
129 |
+
"second_input_column": "sentence2",
|
130 |
+
"label_column": "label",
|
131 |
+
"config_name": "rte",
|
132 |
+
"label_mapping": {
|
133 |
+
"LABEL_0": 0,
|
134 |
+
"LABEL_1": 1
|
135 |
+
}
|
136 |
+
}
|
137 |
+
),
|
138 |
+
SubTask(
|
139 |
+
task_type="text-classification",
|
140 |
+
data="adv_glue",
|
141 |
+
subset="adv_rte",
|
142 |
+
split="validation[:5]",
|
143 |
+
args_for_task={
|
144 |
+
"metric": "glue",
|
145 |
+
"input_column": "sentence1",
|
146 |
+
"second_input_column": "sentence2",
|
147 |
+
"label_column": "label",
|
148 |
+
"config_name": "rte",
|
149 |
+
"label_mapping": {
|
150 |
+
"LABEL_0": 0,
|
151 |
+
"LABEL_1": 1
|
152 |
+
}
|
153 |
+
}
|
154 |
+
),
|
155 |
+
SubTask(
|
156 |
+
task_type="text-classification",
|
157 |
+
data="glue",
|
158 |
+
subset="mnli",
|
159 |
+
split="validation_mismatched[:5]",
|
160 |
+
args_for_task={
|
161 |
+
"metric": "glue",
|
162 |
+
"input_column": "premise",
|
163 |
+
"second_input_column": "hypothesis",
|
164 |
+
"config_name": "mnli",
|
165 |
+
"label_mapping": {
|
166 |
+
"LABEL_0": 0,
|
167 |
+
"LABEL_1": 1,
|
168 |
+
"LABEL_2": 2
|
169 |
+
}
|
170 |
+
}
|
171 |
+
),
|
172 |
+
SubTask(
|
173 |
+
task_type="text-classification",
|
174 |
+
data="adv_glue",
|
175 |
+
subset="adv_mnli",
|
176 |
+
split="validation[:5]",
|
177 |
+
args_for_task={
|
178 |
+
"metric": "glue",
|
179 |
+
"input_column": "premise",
|
180 |
+
"second_input_column": "hypothesis",
|
181 |
+
"config_name": "mnli",
|
182 |
+
"label_mapping": {
|
183 |
+
"LABEL_0": 0,
|
184 |
+
"LABEL_1": 1,
|
185 |
+
"LABEL_2": 2
|
186 |
+
}
|
187 |
+
}
|
188 |
+
),
|
189 |
+
]
|
190 |
+
|
191 |
+
def process_results(self, results):
|
192 |
+
radar_data = [
|
193 |
+
{"accuracy " + result["task_name"].split("/")[-1]:
|
194 |
+
result["accuracy"] for result in results[::2]},
|
195 |
+
{"accuracy " + result["task_name"].replace("adv_", "").split("/")[-1]:
|
196 |
+
result["accuracy"] for result in results[1::2]}]
|
197 |
+
return radar_plot(radar_data, ['GLUE', 'AdvGLUE'])
|
198 |
+
|
199 |
+
def plot_results(self, results, model_or_pipeline):
|
200 |
+
radar_data = self.process_results(results)
|
201 |
+
graphic = radar_plot(radar_data, ['GLUE ' + model_or_pipeline, 'AdvGLUE ' + model_or_pipeline])
|
202 |
+
return graphic
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
git+https://github.com/IntelAI/evaluate@develop
|