|
|
|
|
|
import streamlit as st
|
|
import os
|
|
from openai import OpenAI
|
|
import json
|
|
|
|
def clear_chat():
|
|
st.session_state.messages = []
|
|
|
|
st.title("Intel® AI for Enterprise Inference")
|
|
st.header("LLM chatbot")
|
|
|
|
with st.sidebar:
|
|
api_key = st.session_state.api_key = st.secrets["openai_apikey"]
|
|
base_url = st.session_state.base_url = os.environ.get("base_url")
|
|
client = OpenAI(api_key=api_key, base_url=base_url)
|
|
models = client.models.list()
|
|
model_names = sorted([model.id for model in models])
|
|
default_model_name = "meta-llama/Llama-3.3-70B-Instruct"
|
|
|
|
|
|
if "selected_model" not in st.session_state:
|
|
st.session_state.selected_model = default_model_name if default_model_name in model_names else model_names[0]
|
|
|
|
|
|
modelname = st.selectbox(
|
|
"Select an LLM model (Running on Intel® Gaudi®). Hosted on Denvr Dataworks",
|
|
model_names,
|
|
key="selected_model",
|
|
)
|
|
st.write(f"You selected: {modelname}")
|
|
st.button("Start New Chat", on_click=clear_chat)
|
|
|
|
st.markdown("---")
|
|
st.markdown(
|
|
"""
|
|
**Check the latest models hosted on [Denvr Dataworks](https://www.denvrdata.com/intel), and get your own OpenAI-compatible API key.**
|
|
|
|
**Come and chat with other AI developers on [Intel’s DevHub Discord server](https://discord.gg/kfJ3NKEw5t).**
|
|
"""
|
|
)
|
|
|
|
try:
|
|
if "messages" not in st.session_state:
|
|
st.session_state.messages = []
|
|
|
|
for message in st.session_state.messages:
|
|
with st.chat_message(message["role"]):
|
|
st.markdown(message["content"])
|
|
|
|
if prompt := st.chat_input("What is up?"):
|
|
st.session_state.messages.append({"role": "user", "content": prompt})
|
|
with st.chat_message("user"):
|
|
st.markdown(prompt)
|
|
|
|
with st.chat_message("assistant"):
|
|
try:
|
|
stream = client.chat.completions.create(
|
|
model=modelname,
|
|
messages=[
|
|
{"role": m["role"], "content": m["content"]}
|
|
for m in st.session_state.messages
|
|
],
|
|
max_tokens=4096,
|
|
stream=True,
|
|
)
|
|
response = st.write_stream(stream)
|
|
except Exception as e:
|
|
st.error(f"An error occurred while generating the response: {e}")
|
|
response = "An error occurred while generating the response."
|
|
|
|
st.session_state.messages.append({"role": "assistant", "content": response})
|
|
except KeyError as e:
|
|
st.error(f"Key error: {e}")
|
|
except Exception as e:
|
|
st.error(f"An unexpected error occurred: {e}") |