|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import streamlit as st |
|
import os |
|
from openai import OpenAI |
|
import json |
|
|
|
|
|
|
|
working_dir = os.path.dirname(os.path.abspath(__file__)) |
|
endpoint_data = json.load(open(f"{working_dir}/model_info.json")) |
|
|
|
def clear_chat(): |
|
st.session_state.messages = [] |
|
|
|
st.title("Intel® AI for Enterprise Inference - Chatbot") |
|
|
|
|
|
model_names = list(endpoint_data.keys()) |
|
|
|
with st.sidebar: |
|
modelname = st.selectbox("Select a LLM model (Hosted by DENVR DATAWORKS) ", model_names) |
|
st.write(f"You selected: {modelname}") |
|
st.button("Start New Chat", on_click=clear_chat) |
|
|
|
endpoint = endpoint_data[modelname] |
|
|
|
|
|
|
|
api_key = None |
|
|
|
if not api_key: |
|
st.info("Please add your OpenAI API key to continue.") |
|
st.stop() |
|
base_url = endpoint |
|
client = OpenAI(api_key=api_key, base_url=base_url) |
|
|
|
|
|
models = client.models.list() |
|
modelname = models.data[0].id |
|
|
|
|
|
if "messages" not in st.session_state: |
|
st.session_state.messages = [] |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
if prompt := st.chat_input("What is up?"): |
|
st.session_state.messages.append({"role": "user", "content": prompt}) |
|
with st.chat_message("user"): |
|
st.markdown(prompt) |
|
|
|
with st.chat_message("assistant"): |
|
stream = client.chat.completions.create( |
|
model=modelname, |
|
messages=[ |
|
{"role": m["role"], "content": m["content"]} |
|
for m in st.session_state.messages |
|
], |
|
max_tokens=5000, |
|
stream=True, |
|
) |
|
response = st.write_stream(stream) |
|
st.session_state.messages.append({"role": "assistant", "content": response}) |
|
|
|
|
|
|