Spaces:
Build error
Build error
File size: 15,453 Bytes
8d763c6 039d52f 8d763c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import gradio as gr
import torch
import cv2
### CAM explainer code from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools) ###
class XGradCAM:
def __init__(self, model, targetLayer, targetClass, image, dims, device):
# set any frozen layers to trainable
# gradcam cannot be calculated without it
for param in model.parameters():
if not param.requires_grad:
param.requires_grad = True
self.model = model
self.targetLayer = targetLayer
self.targetClass = targetClass
self.image = image
self.dims = dims
self.device = device
def visualize(self):
from pytorch_grad_cam import XGradCAM, GuidedBackpropReLUModel
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image, deprocess_image, preprocess_image
import torch
import cv2
import numpy as np
import matplotlib.pyplot as plt
self.model.eval().to(self.device)
image = cv2.resize(self.image, self.dims)
# convert to rgb if image is grayscale
converted = False
if len(image.shape) == 2:
converted = True
image = cv2.cvtColor(image, cv2.COLOR_GRAY2RGB)
rgb_img = np.float32(image) / 255
input_tensor = preprocess_image(rgb_img,
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
input_tensor = input_tensor.to(self.device)
self.targetLayer = [self.targetLayer]
if self.targetClass is None:
targets = None
else:
targets = [ClassifierOutputTarget(self.targetClass)]
cam = XGradCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available())
# convert back to grayscale if that is the initial dim
if converted:
input_tensor = input_tensor[:, 0:1, :, :]
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False,
eigen_smooth=False)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
cam_image = cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
gb_model = GuidedBackpropReLUModel(model=self.model, use_cuda=torch.cuda.is_available())
gb = gb_model(input_tensor, target_category=None)
cam_mask = cv2.merge([grayscale_cam, grayscale_cam, grayscale_cam])
cam_gb = deprocess_image(cam_mask * gb)
gb = deprocess_image(gb)
print("XGradCAM, Guided backpropagation, and Guided XGradCAM are generated. ")
return cv2.cvtColor(cam_image, cv2.COLOR_RGB2BGR)
class EigenCAM:
def __init__(self, model, targetLayer, boxes, classes, colors, reshape, image, device):
self.model = model
self.targetLayer = targetLayer
self.boxes = boxes
self.classes = classes
self.colors = colors
self.reshape = reshape
self.image = image
self.device = device
def visualize(self):
from pytorch_grad_cam import EigenCAM
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image, scale_cam_image
import torchvision
import torch
import cv2
import numpy as np
self.model.eval().to(self.device)
rgb_img = np.float32(self.image) / 255
transform = torchvision.transforms.ToTensor()
input_tensor = transform(rgb_img)
input_tensor = input_tensor.unsqueeze(0)
input_tensor = input_tensor.to(self.device)
self.targetLayer = [self.targetLayer]
if self.reshape is None:
cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available())
else:
cam = EigenCAM(self.model, self.targetLayer, use_cuda=torch.cuda.is_available(),
reshape_transform=self.reshape)
targets = []
grayscale_cam = cam(input_tensor=input_tensor, targets=targets, aug_smooth=False,
eigen_smooth=False)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(rgb_img, grayscale_cam, use_rgb=True)
renormalized_cam = np.zeros(grayscale_cam.shape, dtype=np.float32)
for x1, y1, x2, y2 in self.boxes:
renormalized_cam[y1:y2, x1:x2] = scale_cam_image(grayscale_cam[y1:y2, x1:x2].copy())
renormalized_cam = scale_cam_image(renormalized_cam)
eigencam_image_renormalized = show_cam_on_image(rgb_img, renormalized_cam, use_rgb=True)
for i, box in enumerate(self.boxes):
color = self.colors[i]
cv2.rectangle(
eigencam_image_renormalized,
(box[0], box[1]),
(box[2], box[3]),
color, 2
)
cv2.putText(eigencam_image_renormalized, self.classes[i], (box[0], box[1] - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.8, color, 2,
lineType=cv2.LINE_AA)
print("EigenCAM is generated. ")
return eigencam_image_renormalized
### For Gradio Demo ###
def xgradcam(image, model_code, target_class):
global model, target_layer
exec(model_code, globals())
if target_class == "":
target_class = None
else:
target_class = int(target_class)
image_dims = (224, 224)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
xgradcam = XGradCAM(model, target_layer, target_class, image, image_dims, device)
return xgradcam.visualize()
def eigencam(image, model_code, class_code, process_code, reshape_code):
global input_image, model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape
input_image = cv2.resize(image, (640, 640))
exec(model_code, globals())
exec(class_code, globals())
exec(process_code, globals())
exec(reshape_code, globals())
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
eigencam = EigenCAM(model, target_layer, bounding_box_coordinates, class_names, box_colors, reshape, input_image, device)
return eigencam.visualize()
with gr.Blocks() as demo:
gr.Markdown(
"""
# Class Activation Mapping (CAM) Explainer Demo
This is a demo for CAM explainer from Intel XAI tools (https://github.com/IntelAI/intel-xai-tools). \
CAM is an approach which localizes regions in the image responsible for a class prediction. \
The demo shows visualization of XGradCAM for object classification model and EigenCAM for object detection model.
"""
)
with gr.Tab("XGradCAM"):
with gr.Row():
with gr.Column():
xgradcam_image = gr.Image(label="Input Image")
gr.Markdown(
"""
Load the pretrained model to the variable <code>model</code> depending on how it was saved. Then, specify <code>target_layer</code> (normally the last convolutional layer) to compute CAM for. \
Here are some common choices:
- FasterRCNN: <code>model.backbone</code>
- ResNet18 and 50: <code>model.layer4</code>
- VGG and DenseNet161: <code>model.features</code>
Please don't change the variable names in the following code.
"""
)
xgradcam_model = gr.Code(label="Model and Target Layer", value=
"""
from torchvision.models import resnet50, ResNet50_Weights
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
target_layer = model.layer4
""", language="python")
gr.Markdown(
"""
Enter the target category as an integer to compute CAM for. It is the category index in the range <code>[0, NUM_OF_CLASSES-1]</code> based on the training dataset. \
If it is left blank, the highest scoring category will be used.
"""
)
xgradcam_targetClass = gr.Textbox(label="Target Category")
xgradcam_output = gr.Image()
xgradcam_button = gr.Button("Submit")
with gr.Tab("EigenCAM"):
with gr.Row():
with gr.Column():
eigencam_image = gr.Image(label="Input Image")
gr.Markdown(
"""
Load the pretrained model to the variable <code>model</code> depending on how it was saved. Then, specify <code>target_layer</code> (normally the last convolutional layer) to compute CAM for. \
Here are some common choices:
- FasterRCNN: <code>model.backbone</code>
- ResNet18 and 50: <code>model.layer4</code>
- VGG and DenseNet161: <code>model.features</code>
Please don't change the variable names in the following code.
"""
)
eigencam_model = gr.Code(label="Model and Target Layer", value=
"""
from torchvision.models.detection import fasterrcnn_resnet50_fpn
model = fasterrcnn_resnet50_fpn(pretrained=True).eval()
target_layer = model.backbone
""", language="python")
gr.Markdown(
"""
In the case there is no class name in the output from the model, specify <code>class_labels</code> as a list to print them with corresponding bounding box in the image. \
Depending on the model, the class name might not be needed (e.g. YOLO). Then, create <code>color</code> as a list with a size of the number of classes.
"""
)
eigencam_class = gr.Code(label="Class Name", value=
"""
import numpy as np
class_labels = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane',
'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep',
'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', 'umbrella',
'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard',
'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', 'cup', 'fork',
'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange',
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'N/A', 'dining table', 'N/A', 'N/A', 'toilet',
'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave',
'oven', 'toaster', 'sink', 'refrigerator', 'N/A', 'book', 'clock', 'vase',
'scissors', 'teddy bear', 'hair drier', 'toothbrush']
color = np.random.uniform(0, 255, size=(len(class_labels), 3))
""", language="python")
gr.Markdown(
"""
Get <code>output</code> of the model (in the case of FasterRCNN, convert <code>input_image</code> to a tensor first). Then, write a custom <code>process_output</code> function to process the outputs from the model. \
You should get <code>bounding_box_coordinates</code>, <code>class_names</code>, and <code>box_colors</code> of the detected objects with a higher detection score than <code>detection_threshold</code> value. \
If you use other models than FasterRCNN, you need to make your own custom process function to match the structure of the outputs from this function.
"""
)
eigencam_process = gr.Code(label="Output Processing", value=
"""
import torchvision
transform = torchvision.transforms.ToTensor()
input_tensor = transform(np.float32(input_image) / 255).unsqueeze(0)
output = model(input_tensor)[0]
def process_output(output, class_labels, color, detection_threshold):
boxes, classes, labels, colors = [], [], [], []
box = output['boxes'].tolist()
name = [class_labels[i] for i in output['labels'].detach().numpy()]
label = output['labels'].detach().numpy()
for i in range(len(name)):
score = output['scores'].detach().numpy()[i]
if score < detection_threshold:
continue
boxes.append([int(b) for b in box[i]])
classes.append(name[i])
colors.append(color[label[i]])
return boxes, classes, colors
detection_threshold = 0.9
bounding_box_coordinates, class_names, box_colors = process_output(output, class_labels, color, detection_threshold)
""", language="python")
gr.Markdown(
"""
Write a custom <code>reshape</code> function to get the activations from the model and process them into 2D format. \
For example, the backbone of FasterRCNN outputs 5 different tenors with different spatial size as an Ordered Dict, \
thus, we need a custom function which aggregates these image tensors, resizes them to a common shape, and concatenates them. \
If you use other models than FasterRCNN, you need to write your own custom reshape function.
"""
)
eigencam_reshape = gr.Code(label="Reshape", value=
"""
def reshape(x):
target_size = x['pool'].size()[-2 : ]
activations = []
for key, value in x.items():
activations.append(torch.nn.functional.interpolate(torch.abs(value), target_size, mode='bilinear'))
activations = torch.cat(activations, axis=1)
return activations
""", language="python")
eigencam_output = gr.Image()
eigencam_button = gr.Button("Submit")
xgradcam_button.click(xgradcam, inputs=[xgradcam_image, xgradcam_model, xgradcam_targetClass], outputs=xgradcam_output)
eigencam_button.click(eigencam, inputs=[eigencam_image, eigencam_model, eigencam_class, eigencam_process, eigencam_reshape], outputs=eigencam_output)
demo.launch()
|