File size: 23,293 Bytes
7ed8641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d9f5c5
7ed8641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
# The code is a simulation of a healthcare system that uses AI agents to manage patient outreach
# Author: Benjamin Consolvo
# Originally created in 2025
# Original code and idea from Mike Lynch on Medium here. Heavily modified.
# https://medium.com/@micklynch_6905/hospitalgpt-managing-a-patient-population-with-autogen-powered-by-gpt-4-mixtral-8x7b-ef9f54f275f1
# https://github.com/micklynch/hospitalgpt

import os
import asyncio
import pandas as pd
import json
import argparse
from typing import Callable, Dict, Any
from autogen import (
    AssistantAgent,
    UserProxyAgent,
    config_list_from_json,
    GroupChat,
    GroupChatManager,
    register_function,
)
from openai import OpenAI
from prompts.epidemiologist_prompt import EPIDEMIOLOGIST_PROMPT
from prompts.doctor_critic_prompt import DOCTOR_CRITIC_PROMPT
from prompts.user_proxy_prompt import USER_PROXY_PROMPT
from prompts.outreach_email_prompt import OUTREACH_EMAIL_PROMPT_TEMPLATE
import aiofiles  # For asynchronous file writing
import functools  # For wrapping synchronous functions in async

# Export the prompt variables for use in the app
__all__ = [
    "get_configs", "target_patients_outreach", "find_patients", 
    "write_outreach_emails", "USER_PROXY_PROMPT", "EPIDEMIOLOGIST_PROMPT", 
    "DOCTOR_CRITIC_PROMPT", "OUTREACH_EMAIL_PROMPT_TEMPLATE"
]

def get_configs(
    env_or_file: str,
    filter_dict: Dict[str, Any]
    ) -> Dict[str, Any]:
    """
    Load configuration from a JSON file.

    Args:
        env_or_file (str): Path to the JSON file or environment variable name.
        filter_dict (Dict[str, Any]): Dictionary to filter the configuration file.

    Returns:
        Dict[str, Any]: Filtered configuration dictionary.
    """
    return config_list_from_json(env_or_file=env_or_file, filter_dict=filter_dict)

async def target_patients_outreach(
    target_screening: str,
    config_list_llama: Dict[str, Any],
    config_list_deepseek: Dict[str, Any],
    log_fn=None,
    user_proxy_prompt=USER_PROXY_PROMPT,
    epidemiologist_prompt=EPIDEMIOLOGIST_PROMPT,
    doctor_critic_prompt=DOCTOR_CRITIC_PROMPT
    ) -> str:
    """
    Determines the criteria for patient outreach based on a screening task.

    This function facilitates a conversation between a user, an epidemiologist, 
    and a doctor critic to define the criteria for patient outreach. The output 
    criteria from the doctor and epidemiologist include minimum age, maximum age, 
    gender, and a possible previous condition.

    Example:

        criteria = asyncio.run(target_patients_outreach("Type 2 diabetes screening"))

    Args:
        target_screening (str): The type of screening task (e.g., "Type 2 diabetes screening").
        config_list_llama (Dict[str, Any]): Configuration for the Llama model.
        config_list_deepseek (Dict[str, Any]): Configuration for the Deepseek model.
        log_fn (callable, optional): Function for logging messages.
        user_proxy_prompt (str, optional): Custom prompt for the user proxy agent.
        epidemiologist_prompt (str, optional): Custom prompt for the epidemiologist agent.
        doctor_critic_prompt (str, optional): Custom prompt for the doctor critic agent.

    Returns:
        str: The defined criteria for patient outreach.
    """
    llm_config_llama: Dict[str, Any] = {
        "cache_seed": 41,
        "temperature": 0,
        "config_list": config_list_llama,
        "timeout": 120,
    }

    llm_config_deepseek: Dict[str, Any] = {
        "cache_seed": 42,
        "temperature": 0,
        "config_list": config_list_deepseek,
        "timeout": 120,
    }

    user_proxy = UserProxyAgent(
        name="User",
        is_termination_msg=lambda x: (
            x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE")
        ),
        human_input_mode="NEVER",
        description=user_proxy_prompt,  # Use custom prompt
        code_execution_config=False,
        max_consecutive_auto_reply=1,
    )

    epidemiologist = AssistantAgent(
        name="Epidemiologist",
        system_message=epidemiologist_prompt,  # Use custom prompt
        llm_config=llm_config_llama,
        code_execution_config=False,
        is_termination_msg=lambda x: (
            x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE")
        ),
    )

    critic = AssistantAgent(
        name="DoctorCritic",
        system_message=doctor_critic_prompt,  # Use custom prompt
        llm_config=llm_config_deepseek,
        human_input_mode="NEVER",
        code_execution_config=False,
        is_termination_msg=lambda x: (
            x.get("content", "") and x.get("content", "").rstrip().endswith("TERMINATE")
        ),
    )

    groupchat = GroupChat(
        agents=[user_proxy, epidemiologist, critic],
        messages=[]
    )
    manager = GroupChatManager(groupchat=groupchat, llm_config=llm_config_llama)

    user_proxy.initiate_chat(
        manager,
        message=target_screening,
    )
    if log_fn:
        log_fn("Agent conversation complete.")
    user_proxy.stop_reply_at_receive(manager)
    result = user_proxy.last_message()["content"]
    if log_fn:
        log_fn(f"Criteria result: {result}")
    return result

def get_patients_from_criteria(
    patients_file: str,
    min_age: int,
    max_age: int,
    criteria: str,
    gender: str
    ) -> pd.DataFrame:
    """
    Filters patient data from a CSV file based on specified criteria.

    This function reads patient data from a CSV file and filters it based on 
    age range, gender, and a specific condition.

    Example:

        filtered_patients = get_patients_from_criteria(
            patients_file="data/patients.csv",
            min_age=40,
            max_age=70,
            criteria="Adenomatous Polyps",
            gender="None"
        )

    Args:
        patients_file (str): Path to the CSV file containing patient data.
        min_age (int): Minimum age for filtering.
        max_age (int): Maximum age for filtering.
        criteria (str): Condition to filter patients by.
        gender (str, optional): Gender to filter patients by. Defaults to None.

    Returns:
        pd.DataFrame: A DataFrame containing the filtered patient data.
    """
    required_columns = [
        'patient_id', 'First Name', 'Last Name', 'Email',
        'Patient diagnosis summary', 'age', 'gender', 'condition'
    ]

    # Support both file path (str) and file-like object (e.g., from Streamlit)
    if hasattr(patients_file, "read"):
        # Reset pointer in case it's been read before
        patients_file.seek(0)
        patients_df = pd.read_csv(patients_file)
    else:
        patients_df = pd.read_csv(patients_file)

    for column in required_columns:
        if column not in patients_df.columns:
            raise ValueError(f"Missing required column: {column}")

    # Ensure all text is lowercase for case-insensitive matching
    patients_df['condition'] = patients_df['condition'].str.lower()
    criteria = criteria.lower()

    # Filter by condition matching
    condition_filter = patients_df['condition'].str.contains(criteria, na=False)

    # Filter by age range
    age_filter = (patients_df['age'] >= min_age) & (patients_df['age'] <= max_age)

    # Combine filters with OR logic
    combined_filter = age_filter | condition_filter
    
    if gender in ['M', 'F']:
        gender_filter = patients_df['gender'].str.upper() == gender.upper()
        combined_filter = combined_filter & gender_filter

    return patients_df[combined_filter]

def register_function(
    assistant: AssistantAgent,
    user_proxy: UserProxyAgent,
    func: Callable,
    name: str,
    description: str
    ) -> None:
    """
    This function allows an assistant agent and a user proxy agent to execute 
    a specified function.

    Example:
        register_function(
            assistant=assistant_agent,
            user_proxy=user_proxy_agent,
            func=my_function,
            name="my_function",
            description="This is a test function."
        )

    Args:
        assistant (AssistantAgent): The assistant agent to register the function.
        user_proxy (UserProxyAgent): The user proxy agent to register the function.
        func (Callable): The function to register.
        name (str): The name of the function.
        description (str): A description of the function.
    """

    assistant.register_for_llm(
        name=name,
        description=description
        )(func)

    user_proxy.register_for_execution(
        name=name
        )(func)

    return None

async def find_patients(
    criteria: str,
    config_list_llama: Dict[str, Any],
    log_fn=None,
    patients_file_path=None  # Can be a path or a file-like object
    ) -> pd.DataFrame:
    """
    Finds patients matching specific criteria using agents.
    
    This function uses a user proxy agent and a data analyst agent to filter 
    patient data based on the provided criteria.

    Example:
        patients_df = asyncio.run(find_patients(criteria="Patients aged 40 to 70"))

    Args:
        criteria (str): The criteria for filtering patients.
        config_list_llama (Dict[str, Any]): Configuration for the Llama model.
        log_fn (callable, optional): Function for logging messages.
        patients_file_path: Path to patient data file or file-like object.

    Returns:
        pd.DataFrame: A DataFrame containing the filtered patient data.
    """
    # Set up a temporary file path for the agent to use
    temp_file_path = None
    
    # If we have a file-like object (from Streamlit), save it to a temp file
    if patients_file_path is not None and hasattr(patients_file_path, "read"):
        try:
            # Create data directory if it doesn't exist
            os.makedirs("data", exist_ok=True)
            temp_file_path = os.path.join("data", "temp_patients.csv")
            
            # Reset the file pointer and read with pandas
            patients_file_path.seek(0)
            temp_df = pd.read_csv(patients_file_path)
            
            # Save to the temp location
            temp_df.to_csv(temp_file_path, index=False)
            
            if log_fn:
                log_fn(f"Saved uploaded file to temporary location: {temp_file_path}")
                
            # Update the criteria to include the file path
            criteria = f"The patient data is available at {temp_file_path}. " + criteria
        except Exception as e:
            if log_fn:
                log_fn(f"Error preparing patient file: {str(e)}")
            raise
    elif isinstance(patients_file_path, str):
        # It's a regular file path
        temp_file_path = patients_file_path
        criteria = f"The patient data is available at {temp_file_path}. " + criteria
    
    # Configure the LLM
    llm_config_llama: Dict[str, Any] = {
        "cache_seed": 43,
        "temperature": 0,
        "config_list": config_list_llama,
        "timeout": 120,
        "tools": []
    }

    user_proxy = UserProxyAgent(
        name="user_proxy",
        code_execution_config={"last_n_messages": 2, "work_dir": "data/", "use_docker": False},
        is_termination_msg=lambda x: x.get("content", "") and x.get(
            "content", "").rstrip().endswith("TERMINATE"),
        human_input_mode="NEVER",
        llm_config=llm_config_llama,
        # reflect_on_tool_use=True
    )

    data_analyst = AssistantAgent(
        name="data_analyst",
        code_execution_config={
            "last_n_messages": 2, 
            "work_dir": "data/", 
            "use_docker": False},
        llm_config=llm_config_llama,
        # reflect_on_tool_use=True
    )

    register_function(
        data_analyst, 
        user_proxy, 
        get_patients_from_criteria, 
        "get_patients_from_criteria", 
        "Extract and filter patient information based on criteria."
    )
    # --- Fix: Properly extract arguments from the agent conversation ---
    arguments = None  # Ensure arguments is defined in this scope

    def user_proxy_reply(message: str):
        nonlocal temp_file_path
        try:
            if "arguments:" in message:
                arguments_str = message.split("arguments:")[1].strip().split("\n")[0]
                args = eval(arguments_str)
                
                # Override the file path with our temp file if available
                if temp_file_path:
                    args['patients_file'] = temp_file_path
                    if log_fn:
                        log_fn(f"Using patient data from: {temp_file_path}")
                
                return "Tool call received. \nTERMINATE", args
        except Exception as e:
            if log_fn:
                log_fn(f"Error extracting arguments: {e}")
            return f"Error executing function: {str(e)} \nTERMINATE"
        return "Function call not recognized. \nTERMINATE"

    user_proxy.reply_handler = user_proxy_reply
    if log_fn:
        log_fn(f"Set up reply handler with temp file path: {temp_file_path}")

    groupchat = GroupChat(agents=[user_proxy, data_analyst], messages=[])
    manager = GroupChatManager(groupchat=groupchat, llm_config=llm_config_llama)

    chat_output = user_proxy.initiate_chat(data_analyst, message=f"{criteria}")
    user_proxy.stop_reply_at_receive(manager)
    if log_fn:
        log_fn("Agent conversation for patient filtering complete.")

    # Always extract arguments from chat history after chat
    if chat_output and hasattr(chat_output, "chat_history"):
        chat_history = chat_output.chat_history
        for message in chat_history:
            if "tool_calls" in message:
                tool_calls = message["tool_calls"]
                for tool_call in tool_calls:
                    function = tool_call.get("function", {})
                    try:
                        arguments = json.loads(function.get("arguments", None))
                    except Exception:
                        arguments = None
                    if arguments:
                        break
            if arguments:
                break

    if not arguments:
        if log_fn:
            log_fn("Arguments were not populated during the chat process.")
        raise ValueError("Arguments were not populated during the chat process.")

    # Always use the temp file path for the actual data load if available
    if temp_file_path and arguments:
        arguments['patients_file'] = temp_file_path

    filtered_df = get_patients_from_criteria(
        patients_file=arguments['patients_file'],
        min_age=arguments['min_age'],
        max_age=arguments['max_age'],
        criteria=arguments['criteria'],
        gender=arguments['gender']
    )
    if log_fn:
        log_fn(f"Filtered {len(filtered_df)} patients.")
    return filtered_df, arguments

async def generate_email(openai_client, patient, email_prompt, model):
    """
    Asynchronously generate an email using the OpenAI client.

    Args:
        openai_client (OpenAI): The OpenAI client instance.
        patient (dict): The patient data.
        email_prompt (str): The email prompt to send to the model.
        model (str): The model to use for generation.

    Returns:
        str: The generated email content.
    """
    # Wrap the synchronous `create` method in an async function
    create_completion = functools.partial(
        openai_client.chat.completions.create,
        model=model,  # Use model from the OpenAI client
        messages=[{"role": "user", "content": email_prompt}],
        stream=False,
        seed=42,
        temperature=0  # Ensures a consistent output for email (limiting creativity)
    )
    chat_completion = await asyncio.get_event_loop().run_in_executor(None, create_completion)
    return chat_completion.choices[0].message.content


async def write_email_to_file(file_path, patient, email_content):
    """
    Asynchronously write an email to a file.

    Args:
        file_path (str): The path to the file.
        patient (dict): The patient data.
        email_content (str): The email content to write.

    Returns:
        None
    """
    async with aiofiles.open(file_path, "w") as f:
        await f.write(f"Name: {patient['First Name']} {patient['Last Name']}\n")
        await f.write(f"Patient ID: {patient['patient_id']}\n")
        await f.write(f"Email: {patient['Email']}\n")
        await f.write(email_content)
        await f.write("\n")
        await f.write("-----------------------------------------")


async def write_outreach_emails(
    patient_details: pd.DataFrame,
    user_proposal: str,
    arguments_criteria: Dict[str, Any],
    openai_client: OpenAI,
    model: str,
    phone: str = "123-456-7890",
    email: str = "[email protected]",
    name: str = "Benjamin Consolvo",
    log_fn=None,
    outreach_email_prompt_template=OUTREACH_EMAIL_PROMPT_TEMPLATE
    ) -> None:
    """
    Asynchronously generates and writes outreach emails for patients.

    This function generates personalized emails for patients based on their 
    details and the specified screening criteria. The emails are written to 
    individual text files asynchronously.

    Args:
        patient_details (pd.DataFrame): DataFrame containing patient details.
        user_proposal (str): The type of screening task (e.g., "Colonoscopy screening").
        arguments_criteria (Dict[str, Any]): The criteria used for filtering patients.
        openai_client (OpenAI): The OpenAI client instance.
        model (str): Model name to use for generation.
        phone (str): Phone number to include in the outreach emails.
        email (str): Email address to include in the outreach emails.
        name (str): Name to include in the outreach emails.
        log_fn (callable, optional): Function for logging messages.
        outreach_email_prompt_template (str): Custom template for outreach emails.

    Returns:
        None
    """
    os.makedirs("data", exist_ok=True)
    if patient_details.empty:
        msg = "No patients found"
        print(msg)
        if log_fn:
            log_fn(msg)
        return

    async def process_patient(patient):
        # Ensure all required fields are present in the patient record
        required_fields = ['First Name', 'Last Name', 'patient_id', 'Email']
        for field in required_fields:
            if field not in patient or pd.isna(patient[field]):
                msg = f"Skipping patient record due to missing field: {field}"
                print(msg)
                if log_fn:
                    log_fn(msg)
                return

        # Validate the prompt template
        try:
            # Use the custom template instead of the default
            email_prompt = outreach_email_prompt_template.format(
                patient=patient.to_dict(),
                arguments_criteria=arguments_criteria,
                first_name=patient["First Name"],
                last_name=patient["Last Name"],
                user_proposal=user_proposal,
                name=name,
                phone=phone,
                email=email
            )
        except KeyError as e:
            msg = f"Error formatting email prompt: Missing key {e}. Skipping patient."
            print(msg)
            if log_fn:
                log_fn(msg)
            return

        msg = f'Generating email for {patient["First Name"]} {patient["Last Name"]}'
        print(msg)
        if log_fn:
            log_fn(msg)
        email_content = await generate_email(openai_client, patient, email_prompt, model)

        file_path = f"data/{patient['First Name']}_{patient['Last Name']}_email.txt"
        await write_email_to_file(file_path, patient, email_content)
        if log_fn:
            log_fn(f"Wrote email to {file_path}")

    tasks = [process_patient(patient) for _, patient in patient_details.iterrows()]
    await asyncio.gather(*tasks)

    msg = f"All emails have been written to the 'data/' directory."
    print(msg)
    if log_fn:
        log_fn(msg)

def parse_arguments():
    """
    Parse command-line arguments for the script.

    Returns:
        argparse.Namespace: Parsed arguments.
    """
    parser = argparse.ArgumentParser(description="Run the Preventative Healthcare Intel script.")
    parser.add_argument(
        "--oai_config",
        type=str,
        required=True,
        help="Path to the OAI_CONFIG_LIST.json file."
    )
    parser.add_argument(
        "--target_screening",
        type=str,
        required=True,
        help="The type of screening task (e.g., 'Colonoscopy screening')."
    )
    parser.add_argument(
        "--patients_file",
        type=str,
        default="data/patients.csv",
        help="Path to the CSV file containing patient data. Default is 'data/patients.csv'."
    )
    parser.add_argument(
        "--phone",
        type=str,
        default="123-456-7890",
        help="Phone number to include in the outreach emails. Default is '123-456-7890'."
    )
    parser.add_argument(
        "--email",
        type=str,
        default="[email protected]",
        help="Email address to include in the outreach emails. Default is '[email protected]'."
    )
    parser.add_argument(
        "--name",
        type=str,
        default="Benjamin Consolvo",
        help="Name to include in the outreach emails. Default is 'Benjamin Consolvo'."
    )
    return parser.parse_args()

if __name__ == "__main__":
    # Parse command-line arguments
    args = parse_arguments()

    llama_filter_dict = {"model": ["meta-llama/Llama-3.3-70B-Instruct"]}
    config_list_llama = get_configs(args.oai_config,llama_filter_dict)

    deepseek_filter_dict = {"model": ["deepseek-ai/DeepSeek-R1-Distill-Llama-70B"]}
    config_list_deepseek = get_configs(args.oai_config,deepseek_filter_dict)
    
    # Validate API key before initializing OpenAI client
    api_key = config_list_llama[0].get('api_key')
    
    if not api_key:
        config_list_llama[0]['api_key'] = config_list_deepseek[0]['api_key'] = api_key = os.environ.get("OPENAI_API_KEY")

    # Get the criteria for the target screening
    # The user provides the screening task.
    # The epidemiologist and doctor critic will then define the criteria for the outreach.
    filepath = os.path.join(os.getcwd(), args.patients_file)
    criteria = f"The patient data is located here: {filepath}."
    criteria += asyncio.run(target_patients_outreach(args.target_screening,config_list_llama, config_list_deepseek))
    
    # The user proxy agent and data analyst
    # will filter the patients based on the criteria defined by the epidemiologist and doctor critic.
    patients_df, arguments_criteria = asyncio.run(find_patients(criteria,config_list_llama, patients_file_path=filepath))
    
    # Initialize OpenAI client
    openai_client = OpenAI(
        api_key=api_key,
        base_url=config_list_llama[0]['base_url']
    )
    
    #Use LLM to write the outreach emails to text files.
    asyncio.run(write_outreach_emails(
        patients_df, 
        args.target_screening, 
        arguments_criteria, 
        openai_client,
        config_list_llama[0]['model'],
        phone=args.phone,
        email=args.email,
        name=args.name
    ))