Spaces:
Running
Running
File size: 20,300 Bytes
f2789f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import streamlit as st
st.set_page_config(layout="wide")
import yfinance as yf
# import alpaca as tradeapi
import alpaca_trade_api as alpaca
from newsapi import NewsApiClient
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from datetime import datetime, timedelta
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import logging
import threading
import time
import json
import os
import plotly.graph_objs as go
from sklearn.preprocessing import minmax_scale
from plotly.subplots import make_subplots
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
AUTO_TRADE_LOG_PATH = "auto_trade_log.json" # Path to store auto trade log
# The trading history events are saved in the file "auto_trade_log.json"
# This file is created and updated in the current working directory where you run your Streamlit app.
AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours)
class AlpacaTrader:
def __init__(self, API_KEY, API_SECRET, BASE_URL):
self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
self.cash = 0
self.holdings = {}
self.trades = []
def get_market_status(self):
return self.alpaca.get_clock().is_open
def buy(self, symbol, qty):
try:
# Ensure at least $1000 in cash before buying
account = self.alpaca.get_account()
cash_balance = float(account.cash)
if cash_balance < 1000:
logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
return None
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
logger.info(f"Bought {qty} shares of {symbol}")
return order
except Exception as e:
logger.error(f"Error buying {symbol}: {e}")
return None
def sell(self, symbol, qty):
try:
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
logger.info(f"Sold {qty} shares of {symbol}")
return order
except Exception as e:
logger.error(f"Error selling {symbol}: {e}")
return None
def getHoldings(self):
positions = self.alpaca.list_positions()
for position in positions:
self.holdings[position.symbol] = position.market_value
return self.holdings
def getCash(self):
return self.alpaca.get_account().cash
def update_portfolio(self, symbol, price, qty, action):
if action == 'buy':
self.cash -= price * qty
if symbol in self.holdings:
self.holdings[symbol] += price * qty
else:
self.holdings[symbol] = price * qty
elif action == 'sell':
self.cash += price * qty
self.holdings[symbol] -= price * qty
if self.holdings[symbol] <= 0:
del self.holdings[symbol]
self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})
class NewsSentiment:
def __init__(self, API_KEY):
'''
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
'''
self.newsapi = NewsApiClient(api_key=API_KEY)
self.sia = SentimentIntensityAnalyzer()
def get_news_sentiment(self, symbols):
'''
ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
'''
sentiment = {}
for symbol in symbols:
try:
articles = self.newsapi.get_everything(q=symbol,
language='en',
sort_by='publishedAt', # <-- fixed argument name
page=1)
compound_score = 0
for article in articles['articles'][:5]: # Check first 5 articles
# print(f'article= {article}')
score = self.sia.polarity_scores(article['title'])['compound']
compound_score += score
avg_score = compound_score / 5 if articles['articles'] else 0
if avg_score > 0.1:
sentiment[symbol] = 'Positive'
elif avg_score < -0.1:
sentiment[symbol] = 'Negative'
else:
sentiment[symbol] = 'Neutral'
except Exception as e:
logger.error(f"Error getting news for {symbol}: {e}")
sentiment[symbol] = 'Neutral'
return sentiment
class StockAnalyzer:
def __init__(self, alpaca):
self.alpaca = alpaca
self.symbols = self.get_top_volume_stocks()
# Build a symbol->name mapping for use in plots/tables
self.symbol_to_name = self.get_symbol_to_name()
def get_symbol_to_name(self):
# Get mapping from symbol to company name using Alpaca asset info
assets = self.alpaca.alpaca.list_assets(status='active')
return {asset.symbol: asset.name for asset in assets}
def get_bars(self, alp_api, symbols, timeframe='1D'):
bars_data = {}
try:
bars = alp_api.get_bars(list(symbols), timeframe).df
for symbol in symbols:
symbol_bars = bars[bars['symbol'] == symbol]
if not symbol_bars.empty:
bar_info = symbol_bars.iloc[-1]
# Handle index type for timestamp
if isinstance(bar_info.name, tuple):
timestamp = bar_info.name[1].isoformat()
else:
timestamp = bar_info.name.isoformat()
bars_data[symbol] = {
'bar_data': {
'volume': bar_info['volume'],
'open': bar_info['open'],
'high': bar_info['high'],
'low': bar_info['low'],
'close': bar_info['close'],
'timestamp': timestamp
}
}
else:
logger.warning(f"No bar data for symbol: {symbol}")
bars_data[symbol] = {'bar_data': None}
except Exception as e:
logger.warning(f"Error fetching bars in batch: {e}")
for symbol in symbols:
bars_data[symbol] = {'bar_data': None}
return bars_data
def assetswithconditions(self,stock_assets):
cond = {
'class': ['us_equity'],
'exchange': ['NASDAQ', 'NYSE'],
'status': ['active'],
'tradable': [True],
'marginable': [True],
'shortable': [True],
'easy_to_borrow': [True],
'fractionable': [True]
}
assets_with_conditions = []
asset_symbol_dict = {}
for asset in stock_assets:
# Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
if '.' in asset.symbol or '/' in asset.symbol:
continue
if (asset.__getattr__('class') in cond['class'] and
asset.exchange in cond['exchange'] and
asset.status in cond['status'] and
asset.tradable in cond['tradable'] and
asset.marginable in cond['marginable'] and
asset.shortable in cond['shortable'] and
asset.easy_to_borrow in cond['easy_to_borrow'] and
asset.fractionable in cond['fractionable']
):
assets_with_conditions.append(asset)
asset_no_comma = asset.name.replace(',', '')
asset_first_word = asset_no_comma.split()[0]
asset_symbol_dict[asset.symbol] = asset._raw
asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
sorted_dict = dict(sorted(asset_symbol_dict.items()))
# print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
# print(f'assets_with_conditions = {assets_with_conditions}')
return assets_with_conditions, sorted_dict
def get_top_volume_stocks(self,num_stocks=10):
try:
# Get all tradable assets
assets = self.alpaca.alpaca.list_assets(status='active')
# tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
# print(f'tradable_assets = {tradable_assets}')
assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
# print(f'sorted_dict = {sorted_dict}')
# Fetch bar data for all tradable assets
# print(f'sorted_dict.keys()={sorted_dict.keys()}')
tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')
# Extract volume and calculate the top 10 stocks by volume
volume_data = {
symbol: info['bar_data']['volume']
for symbol, info in tradable_assets.items()
if info['bar_data'] is not None
}
top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
print(f'top_volume_stocks = {top_volume_stocks}')
return top_volume_stocks
except Exception as e:
logger.error(f"Error fetching top volume stocks: {e}")
return []
def get_historical_data(self, symbols):
data = {}
for symbol in symbols:
try:
# Pull historical data from 2000-01-01 to today, daily interval
ticker = yf.Ticker(symbol)
hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
data[symbol] = hist
except Exception as e:
logger.error(f"Error getting data for {symbol}: {e}")
return data
class TradingApp:
def __init__(self):
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
self.analyzer = StockAnalyzer(self.alpaca)
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
self.auto_trade_log = [] # Store automatic trade actions
def display_charts(self):
# Create 12 individual dynamic price plots in a 4x3 grid using Plotly (3 columns, 4 rows)
symbols = list(self.data.keys())
symbol_to_name = self.analyzer.symbol_to_name
n = len(symbols)
cols = 3
rows = 4
subplot_titles = [
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
for idx, symbol in enumerate(symbols):
df = self.data[symbol]
if not df.empty:
row = idx // cols + 1
col = idx % cols + 1
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name=symbol,
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
title="Top Volume Stocks - Price Charts (Since 2023)",
height=2000,
showlegend=False,
dragmode=False, # Disable global dragmode
)
# Enable scroll-zoom for each subplot (individual zoom)
fig.update_layout(
xaxis=dict(fixedrange=False),
yaxis=dict(fixedrange=False),
)
for i in range(1, rows * cols + 1):
fig.layout[f'xaxis{i}'].update(fixedrange=False)
fig.layout[f'yaxis{i}'].update(fixedrange=False)
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
def manual_trade(self):
# Move all user inputs to the sidebar
with st.sidebar:
st.header("Manual Trade")
symbol = st.text_input('Enter stock symbol')
qty = int(st.number_input('Enter quantity'))
action = st.selectbox('Action', ['Buy', 'Sell'])
if st.button('Execute'):
if action == 'Buy':
order = self.alpaca.buy(symbol, qty)
else:
order = self.alpaca.sell(symbol, qty)
if order:
st.success(f"Order executed: {action} {qty} shares of {symbol}")
else:
st.error("Order failed")
st.header("Portfolio")
st.write("Cash Balance:")
st.write(self.alpaca.getCash())
st.write("Holdings:")
st.write(self.alpaca.getHoldings())
st.write("Recent Trades:")
st.write(pd.DataFrame(self.alpaca.trades))
def auto_trade_based_on_sentiment(self, sentiment):
# Add company name to each action
actions = []
symbol_to_name = self.analyzer.symbol_to_name
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = self.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = self.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'company_name': symbol_to_name.get(symbol, ''),
'sentiment': sentiment_value,
'action': action
})
self.auto_trade_log = actions
return actions
def background_auto_trade(app):
# This function runs in a background thread and does not require a TTY.
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
# No code changes are needed for this warning.
while True:
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
actions = []
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = app.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = app.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'sentiment': sentiment_value,
'action': action
})
# Append to log file instead of overwriting
log_entry = {
"timestamp": datetime.now().isoformat(),
"actions": actions,
"sentiment": sentiment
}
try:
if os.path.exists(AUTO_TRADE_LOG_PATH):
with open(AUTO_TRADE_LOG_PATH, "r") as f:
log_data = json.load(f)
else:
log_data = []
except Exception:
log_data = []
log_data.append(log_entry)
with open(AUTO_TRADE_LOG_PATH, "w") as f:
json.dump(log_data, f)
time.sleep(AUTO_TRADE_INTERVAL)
def load_auto_trade_log():
try:
with open(AUTO_TRADE_LOG_PATH, "r") as f:
return json.load(f)
except Exception:
return None
def main():
st.title("Stock Trading Application")
if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
st.error("Please configure your API keys in secrets.toml")
return
app = TradingApp()
# Start background thread only once (on first run)
if "auto_trade_thread_started" not in st.session_state:
thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
thread.start()
st.session_state["auto_trade_thread_started"] = True
if app.alpaca.get_market_status():
st.write("Market is open")
else:
st.write("Market is closed")
# User inputs and portfolio are now in the sidebar
app.manual_trade()
# Main area: plots and data
app.display_charts()
# Read and display latest auto-trade actions
st.write("Automatic Trading Actions Based on Sentiment (background):")
auto_trade_log = load_auto_trade_log()
if auto_trade_log:
# Show the most recent entry
last_entry = auto_trade_log[-1]
st.write(f"Last checked: {last_entry['timestamp']}")
df = pd.DataFrame(last_entry["actions"])
# Reorder columns for clarity
if "company_name" in df.columns:
df = df[["symbol", "company_name", "sentiment", "action"]]
st.dataframe(df)
st.write("Sentiment Analysis (latest):")
st.write(last_entry["sentiment"])
# Plot buy/sell actions over time (aggregate for all symbols)
st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
history = []
for entry in auto_trade_log:
ts = entry["timestamp"]
for act in entry["actions"]:
if act["action"] in ("Buy", "Sell"):
history.append({
"timestamp": ts,
"symbol": act["symbol"],
"action": act["action"]
})
if history:
hist_df = pd.DataFrame(history)
if not hist_df.empty:
hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
# Pivot to get Buy/Sell counts per symbol over time
# Avoid FutureWarning by explicitly converting to float after replace
hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1})
hist_df["action_value"] = hist_df["action_value"].astype(float)
pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
st.line_chart(pivot.fillna(0))
else:
st.info("Waiting for first background auto-trade run...")
# Explanation:
# In Alpaca:
# - 'cash' is the actual cash available in your account (uninvested funds).
# - 'buying_power' is the total amount you can use to buy securities, which may be higher than cash if you have margin enabled.
# For a cash account, buying_power == cash.
# For a margin account, buying_power can be up to 2x (or 4x for day trading) your cash, depending on regulations and your account status.
# Example usage:
# account = alpaca.get_account()
# cash_balance = account.cash
# buying_power = account.buying_power
# Note:
# To disable margin on your Alpaca paper account, you must set your account type to "cash" instead of "margin".
# This cannot be changed via the API or code. You must:
# 1. Log in to your Alpaca dashboard at https://app.alpaca.markets/
# 2. Go to "Paper Trading" > "Settings"
# 3. Set the account type to "Cash" (not "Margin")
# 4. If you do not see this option, you may need to reset your paper account or contact Alpaca support.
# There is no programmatic/API way to change the margin setting for a paper account.
if __name__ == "__main__":
main() |