File size: 20,300 Bytes
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
import streamlit as st
st.set_page_config(layout="wide")

import yfinance as yf
# import alpaca as tradeapi
import alpaca_trade_api as alpaca
from newsapi import NewsApiClient
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer

from datetime import datetime, timedelta
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import logging
import threading
import time
import json
import os
import plotly.graph_objs as go
from sklearn.preprocessing import minmax_scale
from plotly.subplots import make_subplots

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

AUTO_TRADE_LOG_PATH = "auto_trade_log.json"  # Path to store auto trade log

# The trading history events are saved in the file "auto_trade_log.json"
# This file is created and updated in the current working directory where you run your Streamlit app.

AUTO_TRADE_INTERVAL = 10800  # Interval in seconds (e.g., 10800 seconds = 3 hours)

class AlpacaTrader:
    def __init__(self, API_KEY, API_SECRET, BASE_URL):
        self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
        self.cash = 0
        self.holdings = {}
        self.trades = []

    def get_market_status(self):
        return self.alpaca.get_clock().is_open

    def buy(self, symbol, qty):
        try:
            # Ensure at least $1000 in cash before buying
            account = self.alpaca.get_account()
            cash_balance = float(account.cash)
            if cash_balance < 1000:
                logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
                return None
            order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
            logger.info(f"Bought {qty} shares of {symbol}")
            return order
        except Exception as e:
            logger.error(f"Error buying {symbol}: {e}")
            return None

    def sell(self, symbol, qty):
        try:
            order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
            logger.info(f"Sold {qty} shares of {symbol}")
            return order
        except Exception as e:
            logger.error(f"Error selling {symbol}: {e}")
            return None

    def getHoldings(self):
        positions = self.alpaca.list_positions()
        for position in positions:
            self.holdings[position.symbol] = position.market_value
        return self.holdings

    def getCash(self):
        return self.alpaca.get_account().cash

    def update_portfolio(self, symbol, price, qty, action):
        if action == 'buy':
            self.cash -= price * qty
            if symbol in self.holdings:
                self.holdings[symbol] += price * qty
            else:
                self.holdings[symbol] = price * qty
        elif action == 'sell':
            self.cash += price * qty
            self.holdings[symbol] -= price * qty
            if self.holdings[symbol] <= 0:
                del self.holdings[symbol]
        self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})

class NewsSentiment:
    def __init__(self, API_KEY):
        '''
        Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
        '''
        self.newsapi = NewsApiClient(api_key=API_KEY)
        self.sia = SentimentIntensityAnalyzer()


    def get_news_sentiment(self, symbols):
        '''
        ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
        '''
        sentiment = {}
        for symbol in symbols:
            try:
                articles = self.newsapi.get_everything(q=symbol,
                                                       language='en',
                                                       sort_by='publishedAt',  # <-- fixed argument name
                                                       page=1)
                compound_score = 0
                for article in articles['articles'][:5]:  # Check first 5 articles
                    # print(f'article= {article}')
                    score = self.sia.polarity_scores(article['title'])['compound']
                    compound_score += score
                avg_score = compound_score / 5 if articles['articles'] else 0
                if avg_score > 0.1:
                    sentiment[symbol] = 'Positive'
                elif avg_score < -0.1:
                    sentiment[symbol] = 'Negative'
                else:
                    sentiment[symbol] = 'Neutral'
            except Exception as e:
                logger.error(f"Error getting news for {symbol}: {e}")
                sentiment[symbol] = 'Neutral'
        return sentiment




class StockAnalyzer:
    def __init__(self, alpaca):
        self.alpaca = alpaca
        self.symbols = self.get_top_volume_stocks()
        # Build a symbol->name mapping for use in plots/tables
        self.symbol_to_name = self.get_symbol_to_name()

    def get_symbol_to_name(self):
        # Get mapping from symbol to company name using Alpaca asset info
        assets = self.alpaca.alpaca.list_assets(status='active')
        return {asset.symbol: asset.name for asset in assets}

    def get_bars(self, alp_api, symbols, timeframe='1D'):
        bars_data = {}
        try:
            bars = alp_api.get_bars(list(symbols), timeframe).df
            for symbol in symbols:
                symbol_bars = bars[bars['symbol'] == symbol]
                if not symbol_bars.empty:
                    bar_info = symbol_bars.iloc[-1]
                    # Handle index type for timestamp
                    if isinstance(bar_info.name, tuple):
                        timestamp = bar_info.name[1].isoformat()
                    else:
                        timestamp = bar_info.name.isoformat()
                    bars_data[symbol] = {
                        'bar_data': {
                            'volume': bar_info['volume'],
                            'open': bar_info['open'],
                            'high': bar_info['high'],
                            'low': bar_info['low'],
                            'close': bar_info['close'],
                            'timestamp': timestamp
                        }
                    }
                else:
                    logger.warning(f"No bar data for symbol: {symbol}")
                    bars_data[symbol] = {'bar_data': None}
        except Exception as e:
            logger.warning(f"Error fetching bars in batch: {e}")
            for symbol in symbols:
                bars_data[symbol] = {'bar_data': None}
        return bars_data

    def assetswithconditions(self,stock_assets):
        cond = {
            'class': ['us_equity'],
            'exchange': ['NASDAQ', 'NYSE'],
            'status': ['active'],
            'tradable': [True],
            'marginable': [True],
            'shortable': [True],
            'easy_to_borrow': [True],
            'fractionable': [True]
        }
        assets_with_conditions = []
        asset_symbol_dict = {}
        
        for asset in stock_assets:
            # Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
            if '.' in asset.symbol or '/' in asset.symbol:
                continue

            if (asset.__getattr__('class') in cond['class'] and 
                asset.exchange in cond['exchange'] and
                asset.status in cond['status'] and
                asset.tradable in cond['tradable'] and
                asset.marginable in cond['marginable'] and
                asset.shortable in cond['shortable'] and 
                asset.easy_to_borrow in cond['easy_to_borrow'] and
                asset.fractionable in cond['fractionable']
                ):
                assets_with_conditions.append(asset)
                
                asset_no_comma = asset.name.replace(',', '')
                asset_first_word = asset_no_comma.split()[0]

                asset_symbol_dict[asset.symbol] = asset._raw
                asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
                
                sorted_dict = dict(sorted(asset_symbol_dict.items()))
        # print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
        # print(f'assets_with_conditions = {assets_with_conditions}')
        return assets_with_conditions, sorted_dict


    def get_top_volume_stocks(self,num_stocks=10):
        try:
            # Get all tradable assets
            assets = self.alpaca.alpaca.list_assets(status='active')
            # tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
            # print(f'tradable_assets = {tradable_assets}')

            assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
            # print(f'sorted_dict = {sorted_dict}')
            # Fetch bar data for all tradable assets
            # print(f'sorted_dict.keys()={sorted_dict.keys()}')
            tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')

            # Extract volume and calculate the top 10 stocks by volume
            volume_data = {
                symbol: info['bar_data']['volume']
                for symbol, info in tradable_assets.items()
                if info['bar_data'] is not None
            }
            top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
            print(f'top_volume_stocks = {top_volume_stocks}')

            return top_volume_stocks
        except Exception as e:
            logger.error(f"Error fetching top volume stocks: {e}")
            return []

    def get_historical_data(self, symbols):
        data = {}
        for symbol in symbols:
            try:
                # Pull historical data from 2000-01-01 to today, daily interval
                ticker = yf.Ticker(symbol)
                hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
                data[symbol] = hist
            except Exception as e:
                logger.error(f"Error getting data for {symbol}: {e}")
        return data

class TradingApp:
    def __init__(self):
        self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
        self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
        self.analyzer = StockAnalyzer(self.alpaca)
        self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
        self.auto_trade_log = []  # Store automatic trade actions

    def display_charts(self):
        # Create 12 individual dynamic price plots in a 4x3 grid using Plotly (3 columns, 4 rows)
        symbols = list(self.data.keys())
        symbol_to_name = self.analyzer.symbol_to_name
        n = len(symbols)
        cols = 3
        rows = 4
        subplot_titles = [
            f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
        ]
        fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
        for idx, symbol in enumerate(symbols):
            df = self.data[symbol]
            if not df.empty:
                row = idx // cols + 1
                col = idx % cols + 1
                fig.add_trace(
                    go.Scatter(
                        x=df.index,
                        y=df['Close'],
                        mode='lines',
                        name=symbol,
                        hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
                    ),
                    row=row,
                    col=col
                )
        fig.update_layout(
            title="Top Volume Stocks - Price Charts (Since 2023)",
            height=2000,
            showlegend=False,
            dragmode=False,  # Disable global dragmode
        )
        # Enable scroll-zoom for each subplot (individual zoom)
        fig.update_layout(
            xaxis=dict(fixedrange=False),
            yaxis=dict(fixedrange=False),
        )
        for i in range(1, rows * cols + 1):
            fig.layout[f'xaxis{i}'].update(fixedrange=False)
            fig.layout[f'yaxis{i}'].update(fixedrange=False)
        st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})

    def manual_trade(self):
        # Move all user inputs to the sidebar
        with st.sidebar:
            st.header("Manual Trade")
            symbol = st.text_input('Enter stock symbol')
            qty = int(st.number_input('Enter quantity'))
            action = st.selectbox('Action', ['Buy', 'Sell'])
            if st.button('Execute'):
                if action == 'Buy':
                    order = self.alpaca.buy(symbol, qty)
                else:
                    order = self.alpaca.sell(symbol, qty)
                if order:
                    st.success(f"Order executed: {action} {qty} shares of {symbol}")
                else:
                    st.error("Order failed")
            st.header("Portfolio")
            st.write("Cash Balance:")
            st.write(self.alpaca.getCash())
            st.write("Holdings:")
            st.write(self.alpaca.getHoldings())
            st.write("Recent Trades:")
            st.write(pd.DataFrame(self.alpaca.trades))

    def auto_trade_based_on_sentiment(self, sentiment):
        # Add company name to each action
        actions = []
        symbol_to_name = self.analyzer.symbol_to_name
        for symbol, sentiment_value in sentiment.items():
            action = None
            if sentiment_value == 'Positive':
                order = self.alpaca.buy(symbol, 1)
                action = 'Buy'
            elif sentiment_value == 'Negative':
                order = self.alpaca.sell(symbol, 1)
                action = 'Sell'
            else:
                order = None
                action = 'Hold'
            actions.append({
                'symbol': symbol,
                'company_name': symbol_to_name.get(symbol, ''),
                'sentiment': sentiment_value,
                'action': action
            })
        self.auto_trade_log = actions
        return actions

def background_auto_trade(app):
    # This function runs in a background thread and does not require a TTY.
    # The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
    # It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
    # No code changes are needed for this warning.
    while True:
        sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
        actions = []
        for symbol, sentiment_value in sentiment.items():
            action = None
            if sentiment_value == 'Positive':
                order = app.alpaca.buy(symbol, 1)
                action = 'Buy'
            elif sentiment_value == 'Negative':
                order = app.alpaca.sell(symbol, 1)
                action = 'Sell'
            else:
                order = None
                action = 'Hold'
            actions.append({
                'symbol': symbol,
                'sentiment': sentiment_value,
                'action': action
            })
        # Append to log file instead of overwriting
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "actions": actions,
            "sentiment": sentiment
        }
        try:
            if os.path.exists(AUTO_TRADE_LOG_PATH):
                with open(AUTO_TRADE_LOG_PATH, "r") as f:
                    log_data = json.load(f)
            else:
                log_data = []
        except Exception:
            log_data = []
        log_data.append(log_entry)
        with open(AUTO_TRADE_LOG_PATH, "w") as f:
            json.dump(log_data, f)
        time.sleep(AUTO_TRADE_INTERVAL)

def load_auto_trade_log():
    try:
        with open(AUTO_TRADE_LOG_PATH, "r") as f:
            return json.load(f)
    except Exception:
        return None

def main():
    st.title("Stock Trading Application")

    if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
        st.error("Please configure your API keys in secrets.toml")
        return

    app = TradingApp()

    # Start background thread only once (on first run)
    if "auto_trade_thread_started" not in st.session_state:
        thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
        thread.start()
        st.session_state["auto_trade_thread_started"] = True

    if app.alpaca.get_market_status():
        st.write("Market is open")
    else:
        st.write("Market is closed")

    # User inputs and portfolio are now in the sidebar
    app.manual_trade()

    # Main area: plots and data
    app.display_charts()

    # Read and display latest auto-trade actions
    st.write("Automatic Trading Actions Based on Sentiment (background):")
    auto_trade_log = load_auto_trade_log()
    if auto_trade_log:
        # Show the most recent entry
        last_entry = auto_trade_log[-1]
        st.write(f"Last checked: {last_entry['timestamp']}")
        df = pd.DataFrame(last_entry["actions"])
        # Reorder columns for clarity
        if "company_name" in df.columns:
            df = df[["symbol", "company_name", "sentiment", "action"]]
        st.dataframe(df)
        st.write("Sentiment Analysis (latest):")
        st.write(last_entry["sentiment"])

        # Plot buy/sell actions over time (aggregate for all symbols)
        st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
        history = []
        for entry in auto_trade_log:
            ts = entry["timestamp"]
            for act in entry["actions"]:
                if act["action"] in ("Buy", "Sell"):
                    history.append({
                        "timestamp": ts,
                        "symbol": act["symbol"],
                        "action": act["action"]
                    })
        if history:
            hist_df = pd.DataFrame(history)
            if not hist_df.empty:
                hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
                # Pivot to get Buy/Sell counts per symbol over time
                # Avoid FutureWarning by explicitly converting to float after replace
                hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1})
                hist_df["action_value"] = hist_df["action_value"].astype(float)
                pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
                st.line_chart(pivot.fillna(0))
    else:
        st.info("Waiting for first background auto-trade run...")

# Explanation:
# In Alpaca:
# - 'cash' is the actual cash available in your account (uninvested funds).
# - 'buying_power' is the total amount you can use to buy securities, which may be higher than cash if you have margin enabled.
#   For a cash account, buying_power == cash.
#   For a margin account, buying_power can be up to 2x (or 4x for day trading) your cash, depending on regulations and your account status.

# Example usage:
# account = alpaca.get_account()
# cash_balance = account.cash
# buying_power = account.buying_power

# Note:
# To disable margin on your Alpaca paper account, you must set your account type to "cash" instead of "margin".
# This cannot be changed via the API or code. You must:
# 1. Log in to your Alpaca dashboard at https://app.alpaca.markets/
# 2. Go to "Paper Trading" > "Settings"
# 3. Set the account type to "Cash" (not "Margin")
# 4. If you do not see this option, you may need to reset your paper account or contact Alpaca support.

# There is no programmatic/API way to change the margin setting for a paper account.

if __name__ == "__main__":
    main()