stocktrader / app.py
Benjamin Consolvo
rm query_params()
9873c68
raw
history blame
41.5 kB
import streamlit as st
st.set_page_config(layout="wide")
import yfinance as yf
# import alpaca as tradeapi
import alpaca_trade_api as alpaca
from newsapi import NewsApiClient
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from datetime import datetime, timedelta
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import logging
import threading
import time
import json
import os
import plotly.graph_objs as go
from sklearn.preprocessing import minmax_scale
from plotly.subplots import make_subplots
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
AUTO_TRADE_LOG_PATH = "auto_trade_log.json" # Path to store auto trade log
# The trading history events are saved in the file "auto_trade_log.json"
# This file is created and updated in the current working directory where you run your Streamlit app.
AUTO_TRADE_INTERVAL = 10800 # Interval in seconds (e.g., 10800 seconds = 3 hours)
class AlpacaTrader:
def __init__(self, API_KEY, API_SECRET, BASE_URL):
self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
self.cash = 0
self.holdings = {}
self.trades = []
def get_market_status(self):
return self.alpaca.get_clock().is_open
def buy(self, symbol, qty):
try:
# Ensure at least $1000 in cash before buying
account = self.alpaca.get_account()
cash_balance = float(account.cash)
if cash_balance < 1000:
logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
return None
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
logger.info(f"Bought {qty} shares of {symbol}")
return order
except Exception as e:
logger.error(f"Error buying {symbol}: {e}")
return None
def sell(self, symbol, qty):
# Check if position exists and has enough quantity before attempting to sell
positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()}
if symbol not in positions:
logger.warning(f"No position in {symbol}. Sell not attempted.")
return None
if positions[symbol] < qty:
logger.warning(f"Not enough shares to sell: {qty} requested, {positions[symbol]} available for {symbol}. Sell not attempted.")
return None
try:
order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
logger.info(f"Sold {qty} shares of {symbol}")
return order
except Exception as e:
logger.error(f"Error selling {symbol}: {e}")
return None
def getHoldings(self):
positions = self.alpaca.list_positions()
for position in positions:
self.holdings[position.symbol] = position.market_value
return self.holdings
def getCash(self):
return self.alpaca.get_account().cash
def update_portfolio(self, symbol, price, qty, action):
if action == 'buy':
self.cash -= price * qty
if symbol in self.holdings:
self.holdings[symbol] += price * qty
else:
self.holdings[symbol] = price * qty
elif action == 'sell':
self.cash += price * qty
self.holdings[symbol] -= price * qty
if self.holdings[symbol] <= 0:
del self.holdings[symbol]
self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})
class NewsSentiment:
def __init__(self, API_KEY):
'''
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
'''
self.newsapi = NewsApiClient(api_key=API_KEY)
self.sia = SentimentIntensityAnalyzer()
def get_news_sentiment(self, symbols):
'''
ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
'''
sentiment = {}
for symbol in symbols:
try:
articles = self.newsapi.get_everything(q=symbol,
language='en',
sort_by='publishedAt', # <-- fixed argument name
page=1)
compound_score = 0
for article in articles['articles'][:5]: # Check first 5 articles
# print(f'article= {article}')
score = self.sia.polarity_scores(article['title'])['compound']
compound_score += score
avg_score = compound_score / 5 if articles['articles'] else 0
if avg_score > 0.1:
sentiment[symbol] = 'Positive'
elif avg_score < -0.1:
sentiment[symbol] = 'Negative'
else:
sentiment[symbol] = 'Neutral'
except Exception as e:
logger.error(f"Error getting news for {symbol}: {e}")
sentiment[symbol] = 'Neutral'
return sentiment
class StockAnalyzer:
def __init__(self, alpaca):
self.alpaca = alpaca
self.symbols = self.get_top_volume_stocks()
# Build a symbol->name mapping for use in plots/tables
self.symbol_to_name = self.get_symbol_to_name()
def get_symbol_to_name(self):
# Get mapping from symbol to company name using Alpaca asset info
assets = self.alpaca.alpaca.list_assets(status='active')
return {asset.symbol: asset.name for asset in assets}
def get_bars(self, alp_api, symbols, timeframe='1D'):
bars_data = {}
try:
bars = alp_api.get_bars(list(symbols), timeframe).df
for symbol in symbols:
symbol_bars = bars[bars['symbol'] == symbol]
if not symbol_bars.empty:
bar_info = symbol_bars.iloc[-1]
# Handle index type for timestamp
if isinstance(bar_info.name, tuple):
timestamp = bar_info.name[1].isoformat()
else:
timestamp = bar_info.name.isoformat()
bars_data[symbol] = {
'bar_data': {
'volume': bar_info['volume'],
'open': bar_info['open'],
'high': bar_info['high'],
'low': bar_info['low'],
'close': bar_info['close'],
'timestamp': timestamp
}
}
else:
logger.warning(f"No bar data for symbol: {symbol}")
bars_data[symbol] = {'bar_data': None}
except Exception as e:
logger.warning(f"Error fetching bars in batch: {e}")
for symbol in symbols:
bars_data[symbol] = {'bar_data': None}
return bars_data
def assetswithconditions(self,stock_assets):
cond = {
'class': ['us_equity'],
'exchange': ['NASDAQ', 'NYSE'],
'status': ['active'],
'tradable': [True],
'marginable': [True],
'shortable': [True],
'easy_to_borrow': [True],
'fractionable': [True]
}
assets_with_conditions = []
asset_symbol_dict = {}
for asset in stock_assets:
# Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
if '.' in asset.symbol or '/' in asset.symbol:
continue
if (asset.__getattr__('class') in cond['class'] and
asset.exchange in cond['exchange'] and
asset.status in cond['status'] and
asset.tradable in cond['tradable'] and
asset.marginable in cond['marginable'] and
asset.shortable in cond['shortable'] and
asset.easy_to_borrow in cond['easy_to_borrow'] and
asset.fractionable in cond['fractionable']
):
assets_with_conditions.append(asset)
asset_no_comma = asset.name.replace(',', '')
asset_first_word = asset_no_comma.split()[0]
asset_symbol_dict[asset.symbol] = asset._raw
asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
sorted_dict = dict(sorted(asset_symbol_dict.items()))
# print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
# print(f'assets_with_conditions = {assets_with_conditions}')
return assets_with_conditions, sorted_dict
def get_top_volume_stocks(self,num_stocks=10):
try:
# Get all tradable assets
assets = self.alpaca.alpaca.list_assets(status='active')
# tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
# print(f'tradable_assets = {tradable_assets}')
assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
# print(f'sorted_dict = {sorted_dict}')
# Fetch bar data for all tradable assets
# print(f'sorted_dict.keys()={sorted_dict.keys()}')
tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')
# Extract volume and calculate the top 10 stocks by volume
volume_data = {
symbol: info['bar_data']['volume']
for symbol, info in tradable_assets.items()
if info['bar_data'] is not None
}
top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
print(f'top_volume_stocks = {top_volume_stocks}')
return top_volume_stocks
except Exception as e:
logger.error(f"Error fetching top volume stocks: {e}")
return []
def get_historical_data(self, symbols):
data = {}
for symbol in symbols:
try:
# Pull historical data from 2000-01-01 to today, daily interval
ticker = yf.Ticker(symbol)
hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
data[symbol] = hist
except Exception as e:
logger.error(f"Error getting data for {symbol}: {e}")
return data
class TradingApp:
def __init__(self):
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
self.analyzer = StockAnalyzer(self.alpaca)
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
self.auto_trade_log = [] # Store automatic trade actions
def display_charts(self):
# Dynamically adjust columns based on number of stocks and available width
symbols = list(self.data.keys())
symbol_to_name = self.analyzer.symbol_to_name
n = len(symbols)
# Calculate columns based on n for best fit
if n <= 3:
cols = n
elif n <= 6:
cols = 3
elif n <= 8:
cols = 4
elif n <= 12:
cols = 4
else:
cols = 5
rows = (n + cols - 1) // cols
subplot_titles = [
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
for idx, symbol in enumerate(symbols):
df = self.data[symbol]
if not df.empty:
row = idx // cols + 1
col = idx % cols + 1
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name=symbol,
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
title="Top Volume Stocks - Price Charts (Since 2023)",
height=max(400 * rows, 600),
showlegend=False,
dragmode=False,
)
# Enable scroll-zoom for each subplot (individual zoom)
fig.update_layout(
xaxis=dict(fixedrange=False),
yaxis=dict(fixedrange=False),
)
for i in range(1, rows * cols + 1):
fig.layout[f'xaxis{i}'].update(fixedrange=False)
fig.layout[f'yaxis{i}'].update(fixedrange=False)
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
def manual_trade(self):
# Move all user inputs to the sidebar
with st.sidebar:
st.header("Manual Trade")
symbol = st.text_input('Enter stock symbol')
qty = int(st.number_input('Enter quantity'))
action = st.selectbox('Action', ['Buy', 'Sell'])
if st.button('Execute'):
if action == 'Buy':
order = self.alpaca.buy(symbol, qty)
else:
order = self.alpaca.sell(symbol, qty)
if order:
st.success(f"Order executed: {action} {qty} shares of {symbol}")
else:
st.error("Order failed")
st.header("Portfolio")
st.write("Cash Balance:")
st.write(self.alpaca.getCash())
st.write("Holdings:")
st.write(self.alpaca.getHoldings())
st.write("Recent Trades:")
st.write(pd.DataFrame(self.alpaca.trades))
def auto_trade_based_on_sentiment(self, sentiment):
# Add company name to each action
actions = []
symbol_to_name = self.analyzer.symbol_to_name
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = self.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = self.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'company_name': symbol_to_name.get(symbol, ''),
'sentiment': sentiment_value,
'action': action
})
self.auto_trade_log = actions
return actions
def background_auto_trade(app):
# This function runs in a background thread and does not require a TTY.
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
# No code changes are needed for this warning.
while True:
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
actions = []
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = app.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = app.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'sentiment': sentiment_value,
'action': action
})
# Append to log file instead of overwriting
log_entry = {
"timestamp": datetime.now().isoformat(),
"actions": actions,
"sentiment": sentiment
}
try:
if os.path.exists(AUTO_TRADE_LOG_PATH):
with open(AUTO_TRADE_LOG_PATH, "r") as f:
log_data = json.load(f)
else:
log_data = []
except Exception:
log_data = []
log_data.append(log_entry)
with open(AUTO_TRADE_LOG_PATH, "w") as f:
json.dump(log_data, f)
time.sleep(AUTO_TRADE_INTERVAL)
def load_auto_trade_log():
try:
with open(AUTO_TRADE_LOG_PATH, "r") as f:
return json.load(f)
except Exception:
return None
class TradingApp:
def __init__(self):
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
self.analyzer = StockAnalyzer(self.alpaca)
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
self.auto_trade_log = [] # Store automatic trade actions
def display_charts(self):
# Dynamically adjust columns based on number of stocks and available width
symbols = list(self.data.keys())
symbol_to_name = self.analyzer.symbol_to_name
n = len(symbols)
# Calculate columns based on n for best fit
if n <= 3:
cols = n
elif n <= 6:
cols = 3
elif n <= 8:
cols = 4
elif n <= 12:
cols = 4
else:
cols = 5
rows = (n + cols - 1) // cols
subplot_titles = [
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
for idx, symbol in enumerate(symbols):
df = self.data[symbol]
if not df.empty:
row = idx // cols + 1
col = idx % cols + 1
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name=symbol,
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
title="Top Volume Stocks - Price Charts (Since 2023)",
height=max(400 * rows, 600),
showlegend=False,
dragmode=False,
)
# Enable scroll-zoom for each subplot (individual zoom)
fig.update_layout(
xaxis=dict(fixedrange=False),
yaxis=dict(fixedrange=False),
)
for i in range(1, rows * cols + 1):
fig.layout[f'xaxis{i}'].update(fixedrange=False)
fig.layout[f'yaxis{i}'].update(fixedrange=False)
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
def manual_trade(self):
# Move all user inputs to the sidebar
with st.sidebar:
st.header("Manual Trade")
symbol = st.text_input('Enter stock symbol')
qty = int(st.number_input('Enter quantity'))
action = st.selectbox('Action', ['Buy', 'Sell'])
if st.button('Execute'):
if action == 'Buy':
order = self.alpaca.buy(symbol, qty)
else:
order = self.alpaca.sell(symbol, qty)
if order:
st.success(f"Order executed: {action} {qty} shares of {symbol}")
else:
st.error("Order failed")
st.header("Portfolio")
st.write("Cash Balance:")
st.write(self.alpaca.getCash())
st.write("Holdings:")
st.write(self.alpaca.getHoldings())
st.write("Recent Trades:")
st.write(pd.DataFrame(self.alpaca.trades))
def auto_trade_based_on_sentiment(self, sentiment):
# Add company name to each action
actions = []
symbol_to_name = self.analyzer.symbol_to_name
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = self.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = self.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'company_name': symbol_to_name.get(symbol, ''),
'sentiment': sentiment_value,
'action': action
})
self.auto_trade_log = actions
return actions
def background_auto_trade(app):
# This function runs in a background thread and does not require a TTY.
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
# No code changes are needed for this warning.
while True:
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
actions = []
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = app.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = app.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'sentiment': sentiment_value,
'action': action
})
# Append to log file instead of overwriting
log_entry = {
"timestamp": datetime.now().isoformat(),
"actions": actions,
"sentiment": sentiment
}
try:
if os.path.exists(AUTO_TRADE_LOG_PATH):
with open(AUTO_TRADE_LOG_PATH, "r") as f:
log_data = json.load(f)
else:
log_data = []
except Exception:
log_data = []
log_data.append(log_entry)
with open(AUTO_TRADE_LOG_PATH, "w") as f:
json.dump(log_data, f)
time.sleep(AUTO_TRADE_INTERVAL)
def load_auto_trade_log():
try:
with open(AUTO_TRADE_LOG_PATH, "r") as f:
return json.load(f)
except Exception:
return None
class TradingApp:
def __init__(self):
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
self.analyzer = StockAnalyzer(self.alpaca)
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
self.auto_trade_log = [] # Store automatic trade actions
def display_charts(self):
# Dynamically adjust columns based on number of stocks and available width
symbols = list(self.data.keys())
symbol_to_name = self.analyzer.symbol_to_name
n = len(symbols)
# Calculate columns based on n for best fit
if n <= 3:
cols = n
elif n <= 6:
cols = 3
elif n <= 8:
cols = 4
elif n <= 12:
cols = 4
else:
cols = 5
rows = (n + cols - 1) // cols
subplot_titles = [
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
for idx, symbol in enumerate(symbols):
df = self.data[symbol]
if not df.empty:
row = idx // cols + 1
col = idx % cols + 1
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name=symbol,
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
title="Top Volume Stocks - Price Charts (Since 2023)",
height=max(400 * rows, 600),
showlegend=False,
dragmode=False,
)
# Enable scroll-zoom for each subplot (individual zoom)
fig.update_layout(
xaxis=dict(fixedrange=False),
yaxis=dict(fixedrange=False),
)
for i in range(1, rows * cols + 1):
fig.layout[f'xaxis{i}'].update(fixedrange=False)
fig.layout[f'yaxis{i}'].update(fixedrange=False)
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
def manual_trade(self):
# Move all user inputs to the sidebar
with st.sidebar:
st.header("Manual Trade")
symbol = st.text_input('Enter stock symbol')
qty = int(st.number_input('Enter quantity'))
action = st.selectbox('Action', ['Buy', 'Sell'])
if st.button('Execute'):
if action == 'Buy':
order = self.alpaca.buy(symbol, qty)
else:
order = self.alpaca.sell(symbol, qty)
if order:
st.success(f"Order executed: {action} {qty} shares of {symbol}")
else:
st.error("Order failed")
st.header("Portfolio")
st.write("Cash Balance:")
st.write(self.alpaca.getCash())
st.write("Holdings:")
st.write(self.alpaca.getHoldings())
st.write("Recent Trades:")
st.write(pd.DataFrame(self.alpaca.trades))
def auto_trade_based_on_sentiment(self, sentiment):
# Add company name to each action
actions = []
symbol_to_name = self.analyzer.symbol_to_name
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = self.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = self.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'company_name': symbol_to_name.get(symbol, ''),
'sentiment': sentiment_value,
'action': action
})
self.auto_trade_log = actions
return actions
def background_auto_trade(app):
# This function runs in a background thread and does not require a TTY.
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
# No code changes are needed for this warning.
while True:
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
actions = []
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = app.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = app.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'sentiment': sentiment_value,
'action': action
})
# Append to log file instead of overwriting
log_entry = {
"timestamp": datetime.now().isoformat(),
"actions": actions,
"sentiment": sentiment
}
try:
if os.path.exists(AUTO_TRADE_LOG_PATH):
with open(AUTO_TRADE_LOG_PATH, "r") as f:
log_data = json.load(f)
else:
log_data = []
except Exception:
log_data = []
log_data.append(log_entry)
with open(AUTO_TRADE_LOG_PATH, "w") as f:
json.dump(log_data, f)
time.sleep(AUTO_TRADE_INTERVAL)
def load_auto_trade_log():
try:
with open(AUTO_TRADE_LOG_PATH, "r") as f:
return json.load(f)
except Exception:
return None
# Remove the following line, as st.query_params is not callable and causes a TypeError
# st.query_params() # This is a no-op but ensures Streamlit doesn't rerun due to query params
class TradingApp:
def __init__(self):
self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
self.analyzer = StockAnalyzer(self.alpaca)
self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
self.auto_trade_log = [] # Store automatic trade actions
def display_charts(self):
# Dynamically adjust columns based on number of stocks and available width
symbols = list(self.data.keys())
symbol_to_name = self.analyzer.symbol_to_name
n = len(symbols)
# Calculate columns based on n for best fit
if n <= 3:
cols = n
elif n <= 6:
cols = 3
elif n <= 8:
cols = 4
elif n <= 12:
cols = 4
else:
cols = 5
rows = (n + cols - 1) // cols
subplot_titles = [
f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
for idx, symbol in enumerate(symbols):
df = self.data[symbol]
if not df.empty:
row = idx // cols + 1
col = idx % cols + 1
fig.add_trace(
go.Scatter(
x=df.index,
y=df['Close'],
mode='lines',
name=symbol,
hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
),
row=row,
col=col
)
fig.update_layout(
title="Top Volume Stocks - Price Charts (Since 2023)",
height=max(400 * rows, 600),
showlegend=False,
dragmode=False,
)
# Enable scroll-zoom for each subplot (individual zoom)
fig.update_layout(
xaxis=dict(fixedrange=False),
yaxis=dict(fixedrange=False),
)
for i in range(1, rows * cols + 1):
fig.layout[f'xaxis{i}'].update(fixedrange=False)
fig.layout[f'yaxis{i}'].update(fixedrange=False)
st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})
def manual_trade(self):
# Move all user inputs to the sidebar
with st.sidebar:
st.header("Manual Trade")
symbol = st.text_input('Enter stock symbol')
qty = int(st.number_input('Enter quantity'))
action = st.selectbox('Action', ['Buy', 'Sell'])
if st.button('Execute'):
if action == 'Buy':
order = self.alpaca.buy(symbol, qty)
else:
order = self.alpaca.sell(symbol, qty)
if order:
st.success(f"Order executed: {action} {qty} shares of {symbol}")
else:
st.error("Order failed")
st.header("Portfolio")
st.write("Cash Balance:")
st.write(self.alpaca.getCash())
st.write("Holdings:")
st.write(self.alpaca.getHoldings())
st.write("Recent Trades:")
st.write(pd.DataFrame(self.alpaca.trades))
def auto_trade_based_on_sentiment(self, sentiment):
# Add company name to each action
actions = []
symbol_to_name = self.analyzer.symbol_to_name
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = self.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = self.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'company_name': symbol_to_name.get(symbol, ''),
'sentiment': sentiment_value,
'action': action
})
self.auto_trade_log = actions
return actions
def background_auto_trade(app):
# This function runs in a background thread and does not require a TTY.
# The warning "tcgetpgrp failed: Not a tty" is harmless and can be ignored.
# It is likely caused by the environment in which the script is running (e.g., Streamlit, Docker, or a notebook).
# No code changes are needed for this warning.
while True:
sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
actions = []
for symbol, sentiment_value in sentiment.items():
action = None
if sentiment_value == 'Positive':
order = app.alpaca.buy(symbol, 1)
action = 'Buy'
elif sentiment_value == 'Negative':
order = app.alpaca.sell(symbol, 1)
action = 'Sell'
else:
order = None
action = 'Hold'
actions.append({
'symbol': symbol,
'sentiment': sentiment_value,
'action': action
})
# Append to log file instead of overwriting
log_entry = {
"timestamp": datetime.now().isoformat(),
"actions": actions,
"sentiment": sentiment
}
try:
if os.path.exists(AUTO_TRADE_LOG_PATH):
with open(AUTO_TRADE_LOG_PATH, "r") as f:
log_data = json.load(f)
else:
log_data = []
except Exception:
log_data = []
log_data.append(log_entry)
with open(AUTO_TRADE_LOG_PATH, "w") as f:
json.dump(log_data, f)
time.sleep(AUTO_TRADE_INTERVAL)
def load_auto_trade_log():
try:
with open(AUTO_TRADE_LOG_PATH, "r") as f:
return json.load(f)
except Exception:
return None
# Add this at the top after imports to suppress Streamlit reruns on widget interaction
st.experimental_set_query_params() # This is a no-op but ensures Streamlit doesn't rerun due to query params
def get_market_times(alpaca_api):
try:
clock = alpaca_api.get_clock()
is_open = clock.is_open
now = pd.Timestamp(clock.timestamp).tz_convert('America/New_York')
next_close = pd.Timestamp(clock.next_close).tz_convert('America/New_York')
next_open = pd.Timestamp(clock.next_open).tz_convert('America/New_York')
return is_open, now, next_open, next_close
except Exception as e:
logger.error(f"Error fetching market times: {e}")
return None, None, None, None
def main():
st.title("Stock Trading Application")
if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
st.error("Please configure your API keys in secrets.toml")
return
# Prevent Streamlit from rerunning the script on every widget interaction
# Use session state to persist objects and only update when necessary
if "app_instance" not in st.session_state:
st.session_state["app_instance"] = TradingApp()
app = st.session_state["app_instance"]
# Only start the background thread once
if "auto_trade_thread_started" not in st.session_state:
thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
thread.start()
st.session_state["auto_trade_thread_started"] = True
# Dynamic market clock
is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca)
market_status = "🟒 Market is OPEN" if is_open else "πŸ”΄ Market is CLOSED"
st.markdown(f"### {market_status}")
if now is not None:
st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}")
if is_open and next_close is not None:
st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET")
# Show countdown to close
seconds_left = int((next_close - now).total_seconds())
st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}")
elif not is_open and next_open is not None:
st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET")
# Show countdown to open
seconds_left = int((next_open - now).total_seconds())
st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}")
# Add auto-refresh for the clock every 5 seconds
st.experimental_rerun()
time.sleep(5)
# User inputs and portfolio are now in the sidebar
app.manual_trade()
# Main area: plots and data
app.display_charts()
# Read and display latest auto-trade actions
st.write("Automatic Trading Actions Based on Sentiment (background):")
auto_trade_log = load_auto_trade_log()
if auto_trade_log:
# Show the most recent entry
last_entry = auto_trade_log[-1]
st.write(f"Last checked: {last_entry['timestamp']}")
df = pd.DataFrame(last_entry["actions"])
# Reorder columns for clarity
if "company_name" in df.columns:
df = df[["symbol", "company_name", "sentiment", "action"]]
st.dataframe(df)
st.write("Sentiment Analysis (latest):")
st.write(last_entry["sentiment"])
# Plot buy/sell actions over time (aggregate for all symbols)
st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
history = []
for entry in auto_trade_log:
ts = entry["timestamp"]
for act in entry["actions"]:
if act["action"] in ("Buy", "Sell"):
history.append({
"timestamp": ts,
"symbol": act["symbol"],
"action": act["action"]
})
if history:
hist_df = pd.DataFrame(history)
if not hist_df.empty:
hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
# Pivot to get Buy/Sell counts per symbol over time
# Avoid FutureWarning by explicitly converting to float after replace
hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1})
hist_df["action_value"] = hist_df["action_value"].astype(float)
pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
st.line_chart(pivot.fillna(0))
else:
st.info("Waiting for first background auto-trade run...")
# Explanation:
# In Alpaca:
# - 'cash' is the actual cash available in your account (uninvested funds).
# - 'buying_power' is the total amount you can use to buy securities, which may be higher than cash if you have margin enabled.
# For a cash account, buying_power == cash.
# For a margin account, buying_power can be up to 2x (or 4x for day trading) your cash, depending on regulations and your account status.
# Example usage:
# account = alpaca.get_account()
# cash_balance = account.cash
# buying_power = account.buying_power
# Note:
# To disable margin on your Alpaca paper account, you must set your account type to "cash" instead of "margin".
# This cannot be changed via the API or code. You must:
# 1. Log in to your Alpaca dashboard at https://app.alpaca.markets/
# 2. Go to "Paper Trading" > "Settings"
# 3. Set the account type to "Cash" (not "Margin")
# 4. If you do not see this option, you may need to reset your paper account or contact Alpaca support.
# There is no programmatic/API way to change the margin setting for a paper account.
if __name__ == "__main__":
main()