Benjamin Consolvo
commited on
Commit
Β·
5faa415
1
Parent(s):
6c62682
add gift lfs tracking for images
Browse files- .gitattributes +1 -0
- README.md +28 -50
- images/hf_vacaigent.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
images/hf_vacaigent.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -7,17 +7,18 @@ sdk: streamlit
|
|
| 7 |
sdk_version: 1.44.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
short_description: Let AI agents plan your next vacation!
|
| 12 |
---
|
| 13 |
|
| 14 |
# ποΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
|
| 15 |
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently, now with an added layer of interactivity and accessibility through Streamlit.
|
| 21 |
|
| 22 |
**Check out the video below for code walkthrough** π
|
| 23 |
|
|
@@ -29,28 +30,25 @@ VacAIgent leverages the CrewAI framework to automate and enhance the trip planni
|
|
| 29 |
|
| 30 |
## CrewAI Framework
|
| 31 |
|
| 32 |
-
CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a
|
| 33 |
-
|
| 34 |
-
## Streamlit Interface
|
| 35 |
|
| 36 |
-
The introduction of [Streamlit](https://streamlit.io/) transforms this application into an interactive web app, allowing users to easily input their preferences and receive tailored travel plans.
|
| 37 |
|
| 38 |
## Running the Application
|
| 39 |
|
| 40 |
To experience the VacAIgent app:
|
| 41 |
|
| 42 |
### Pre-Requisites
|
| 43 |
-
1.
|
| 44 |
-
2. Get the API
|
| 45 |
-
3.
|
|
|
|
| 46 |
|
| 47 |
### Deploy Trip Planner
|
| 48 |
|
| 49 |
#### Step 1
|
| 50 |
```sh
|
| 51 |
-
git clone https://github.com/
|
| 52 |
```
|
| 53 |
-
* *Please make sure git is installed*
|
| 54 |
|
| 55 |
#### Step 2
|
| 56 |
|
|
@@ -59,9 +57,10 @@ Insall Dependencies
|
|
| 59 |
pip install -r requirements.txt
|
| 60 |
```
|
| 61 |
#### Step 3
|
|
|
|
| 62 |
|
| 63 |
```sh
|
| 64 |
-
cd trip_planner_agent
|
| 65 |
```
|
| 66 |
|
| 67 |
create `.streamlit/secrets.toml` file and Update **Credentials**
|
|
@@ -71,52 +70,35 @@ create `.streamlit/secrets.toml` file and Update **Credentials**
|
|
| 71 |
SERPER_API_KEY=""
|
| 72 |
SCRAPINGANT_API_KEY=""
|
| 73 |
OPENAI_API_KEY=""
|
| 74 |
-
MODEL_ID=""
|
| 75 |
-
MODEL_BASE_URL=""
|
|
|
|
| 76 |
```
|
|
|
|
|
|
|
| 77 |
#### Step 4
|
| 78 |
|
| 79 |
Run the application
|
| 80 |
|
| 81 |
```sh
|
| 82 |
-
streamlit run
|
| 83 |
```
|
| 84 |
|
| 85 |
-
Your application should be up and running
|
| 86 |
|
| 87 |
-
β
**Disclaimer**: The application uses
|
| 88 |
|
| 89 |
## Details & Explanation
|
| 90 |
|
| 91 |
-
- **Streamlit UI**: The Streamlit interface is implemented in `streamlit_app.py`, where users can input their trip details.
|
| 92 |
- **Components**:
|
| 93 |
-
-
|
| 94 |
-
-
|
| 95 |
-
-
|
| 96 |
-
-
|
| 97 |
-
|
| 98 |
-
## Using GPT 3.5
|
| 99 |
-
|
| 100 |
-
To switch from GPT-4 to GPT-3.5, pass the llm argument in the agent constructor:
|
| 101 |
-
|
| 102 |
-
```python
|
| 103 |
-
from langchain.chat_models import ChatOpenAI
|
| 104 |
-
|
| 105 |
-
llm = ChatOpenAI(model='gpt-3.5-turbo') # Loading gpt-3.5-turbo (see more OpenAI models at https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4)
|
| 106 |
-
|
| 107 |
-
class TripAgents:
|
| 108 |
-
# ... existing methods
|
| 109 |
|
| 110 |
-
|
| 111 |
-
return Agent(
|
| 112 |
-
role='Local Expert',
|
| 113 |
-
goal='Provide insights about the selected city',
|
| 114 |
-
tools=[SearchTools.search_internet, BrowserTools.scrape_and_summarize_website],
|
| 115 |
-
llm=llm,
|
| 116 |
-
verbose=True
|
| 117 |
-
)
|
| 118 |
|
| 119 |
-
|
| 120 |
|
| 121 |
## Using Local Models with Ollama
|
| 122 |
|
|
@@ -157,8 +139,4 @@ class TripAgents:
|
|
| 157 |
|
| 158 |
## License
|
| 159 |
|
| 160 |
-
VacAIgent is open-sourced under the MIT
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 7 |
sdk_version: 1.44.1
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
short_description: Let AI agents plan your next vacation!
|
| 12 |
---
|
| 13 |
|
| 14 |
# ποΈ VacAIgent: Streamlit-Integrated AI Crew for Trip Planning
|
| 15 |
|
| 16 |
+
VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently.
|
| 17 |
|
| 18 |
+
_Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner). You can find the application hosted on Hugging Face Spaces here:
|
| 19 |
+
|
| 20 |
+
[](https://huggingface.co/spaces/Intel/vacaigent)
|
| 21 |
|
|
|
|
| 22 |
|
| 23 |
**Check out the video below for code walkthrough** π
|
| 24 |
|
|
|
|
| 30 |
|
| 31 |
## CrewAI Framework
|
| 32 |
|
| 33 |
+
CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a Streamlit user interface.
|
|
|
|
|
|
|
| 34 |
|
|
|
|
| 35 |
|
| 36 |
## Running the Application
|
| 37 |
|
| 38 |
To experience the VacAIgent app:
|
| 39 |
|
| 40 |
### Pre-Requisites
|
| 41 |
+
1. Get the API key from **scrapinagent.com** from [scrapinagent](https://scrapingant.com/)
|
| 42 |
+
2. Get the API from **SERPER API** from [serper]( https://serper.dev/)
|
| 43 |
+
3. Bring your OpenAI compatible API key
|
| 44 |
+
4. Bring your model endpoint URL and LLM model ID that you want to use
|
| 45 |
|
| 46 |
### Deploy Trip Planner
|
| 47 |
|
| 48 |
#### Step 1
|
| 49 |
```sh
|
| 50 |
+
git clone https://github.com/opea-project/Enterprise-Inference/
|
| 51 |
```
|
|
|
|
| 52 |
|
| 53 |
#### Step 2
|
| 54 |
|
|
|
|
| 57 |
pip install -r requirements.txt
|
| 58 |
```
|
| 59 |
#### Step 3
|
| 60 |
+
Add Streamlit secrets
|
| 61 |
|
| 62 |
```sh
|
| 63 |
+
cd examples/trip_planner_agent
|
| 64 |
```
|
| 65 |
|
| 66 |
create `.streamlit/secrets.toml` file and Update **Credentials**
|
|
|
|
| 70 |
SERPER_API_KEY=""
|
| 71 |
SCRAPINGANT_API_KEY=""
|
| 72 |
OPENAI_API_KEY=""
|
| 73 |
+
MODEL_ID="meta-llama/Llama-3.3-70B-Instruct"
|
| 74 |
+
MODEL_BASE_URL="https://api.inference.denvrdata.com/v1/"
|
| 75 |
+
|
| 76 |
```
|
| 77 |
+
**Note**: You can alternatively add these secrets directly to Hugging Face Spaces Secrets, under the Settings tab, if deploying the Streamlit application directly on Hugging Face.
|
| 78 |
+
|
| 79 |
#### Step 4
|
| 80 |
|
| 81 |
Run the application
|
| 82 |
|
| 83 |
```sh
|
| 84 |
+
streamlit run app.py
|
| 85 |
```
|
| 86 |
|
| 87 |
+
Your application should be up and running in your web browser.
|
| 88 |
|
| 89 |
+
β
**Disclaimer**: The application uses meta-llama/Llama-3.3-70B-Instruct by default. Ensure you have access to an OpenAI-compatible API and be aware of any associated costs.
|
| 90 |
|
| 91 |
## Details & Explanation
|
| 92 |
|
|
|
|
| 93 |
- **Components**:
|
| 94 |
+
- [trip_tasks.py](trip_tasks.py): Contains task prompts for the agents.
|
| 95 |
+
- [trip_agents.py](trip_agents.py): Manages the creation of agents.
|
| 96 |
+
- [tools](tools) directory: Houses tool classes used by agents.
|
| 97 |
+
- [app.py](app.py): The heart of the frontend Streamlit app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
## LLM Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
+
To switch the LLM model being used, you can switch the `MODEL_ID` in the `.streamlit/secrets.toml` file.
|
| 102 |
|
| 103 |
## Using Local Models with Ollama
|
| 104 |
|
|
|
|
| 139 |
|
| 140 |
## License
|
| 141 |
|
| 142 |
+
VacAIgent is open-sourced under the MIT license.
|
|
|
|
|
|
|
|
|
|
|
|
images/hf_vacaigent.png
ADDED
|
Git LFS Details
|