Benjamin Consolvo
commited on
Commit
·
d1ff7ba
1
Parent(s):
248d80d
readme updates
Browse files
README.md
CHANGED
@@ -4,22 +4,21 @@ emoji: 🐨
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Let AI agents plan your next vacation!
|
12 |
---
|
13 |
|
14 |
-
# 🏖️ VacAIgent:
|
15 |
|
16 |
-
VacAIgent leverages the CrewAI framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently.
|
17 |
|
18 |
-
_Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner). You can find the application hosted on Hugging Face Spaces here:
|
19 |
|
20 |
[](https://huggingface.co/spaces/Intel/vacaigent)
|
21 |
|
22 |
-
|
23 |
**Check out the video below for code walkthrough** 👇
|
24 |
|
25 |
<a href="https://youtu.be/nKG_kbQUDDE">
|
@@ -28,110 +27,65 @@ _Forked and enhanced from the_ [_crewAI examples repository_](https://github.com
|
|
28 |
|
29 |
(_Trip example originally developed by [@joaomdmoura](https://x.com/joaomdmoura)_)
|
30 |
|
31 |
-
## CrewAI Framework
|
32 |
-
|
33 |
-
CrewAI simplifies the orchestration of role-playing AI agents. In VacAIgent, these agents collaboratively decide on cities and craft a complete itinerary for your trip based on specified preferences, all accessible via a Streamlit user interface.
|
34 |
-
|
35 |
|
36 |
-
## Running the Application
|
37 |
|
38 |
-
|
39 |
|
40 |
### Pre-Requisites
|
41 |
-
1. Get the API key from **scrapinagent.com** from [scrapinagent](https://scrapingant.com/)
|
42 |
-
2. Get the API from **SERPER API** from [serper]( https://serper.dev/)
|
43 |
3. Bring your OpenAI compatible API key
|
44 |
-
4. Bring your model endpoint URL and LLM model ID
|
45 |
|
46 |
-
###
|
47 |
|
48 |
-
|
49 |
-
Clone the repository:
|
50 |
```sh
|
51 |
git clone https://github.com/opea-project/Enterprise-Inference/
|
52 |
cd examples/vacaigent
|
53 |
```
|
54 |
-
|
55 |
-
#### Step 2
|
56 |
-
|
57 |
-
Insall Dependencies
|
58 |
```sh
|
59 |
pip install -r requirements.txt
|
60 |
```
|
61 |
-
#### Step 3
|
62 |
Add Streamlit secrets. Create a `.streamlit/secrets.toml` file and update the variables below:
|
63 |
|
64 |
```sh
|
65 |
-
SERPER_API_KEY=""
|
66 |
-
SCRAPINGANT_API_KEY=""
|
67 |
-
OPENAI_API_KEY=""
|
68 |
MODEL_ID="meta-llama/Llama-3.3-70B-Instruct"
|
69 |
MODEL_BASE_URL="https://api.inference.denvrdata.com/v1/"
|
70 |
-
|
71 |
```
|
72 |
-
**Note**: You can alternatively add these secrets directly to Hugging Face Spaces Secrets, under the Settings tab, if deploying the Streamlit application directly on Hugging Face.
|
73 |
|
74 |
-
|
75 |
|
76 |
-
|
77 |
|
|
|
|
|
78 |
```sh
|
79 |
streamlit run app.py
|
80 |
```
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
★ **Disclaimer**: The application uses meta-llama/Llama-3.3-70B-Instruct by default. Ensure you have access to an OpenAI-compatible API and be aware of any associated costs.
|
85 |
-
|
86 |
-
## Details & Explanation
|
87 |
-
|
88 |
-
- **Components**:
|
89 |
- [trip_tasks.py](trip_tasks.py): Contains task prompts for the agents.
|
90 |
- [trip_agents.py](trip_agents.py): Manages the creation of agents.
|
91 |
- [tools](tools) directory: Houses tool classes used by agents.
|
92 |
- [app.py](app.py): The heart of the frontend Streamlit app.
|
93 |
|
94 |
-
## LLM Model
|
95 |
-
|
96 |
-
To switch the LLM model being used, you can switch the `MODEL_ID` in the `.streamlit/secrets.toml` file.
|
97 |
-
|
98 |
## Using Local Models with Ollama
|
99 |
|
100 |
-
For enhanced privacy and customization, you
|
101 |
-
|
102 |
-
### Setting Up Ollama
|
103 |
-
|
104 |
-
- **Installation**: Follow Ollama's guide for installation.
|
105 |
-
- **Configuration**: Customize the model as per your requirements.
|
106 |
-
|
107 |
-
### Integrating Ollama with CrewAI
|
108 |
-
|
109 |
-
Pass the Ollama model to agents in the CrewAI framework:
|
110 |
-
|
111 |
-
```python
|
112 |
-
from langchain.llms import Ollama
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
class TripAgents:
|
117 |
-
# ... existing methods
|
118 |
|
119 |
-
|
120 |
-
return Agent(
|
121 |
-
role='Local Expert',
|
122 |
-
tools=[SearchTools.search_internet, BrowserTools.scrape_and_summarize_website],
|
123 |
-
llm=ollama_model,
|
124 |
-
verbose=True
|
125 |
-
)
|
126 |
|
127 |
-
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
132 |
-
- **Customization**: Tailor models to fit specific needs.
|
133 |
-
- **Performance**: Potentially faster responses with on-premises models.
|
134 |
-
|
135 |
-
## License
|
136 |
|
137 |
-
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.45.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
short_description: Let AI agents plan your next vacation!
|
12 |
---
|
13 |
|
14 |
+
# 🏖️ VacAIgent: Let AI agents plan your next vacation!
|
15 |
|
16 |
+
VacAIgent leverages the CrewAI agentic framework to automate and enhance the trip planning experience, integrating a user-friendly Streamlit interface. This project demonstrates how autonomous AI agents can collaborate and execute complex tasks efficiently. It takes advantage of the inference endpoint called [Intel® AI for Enterprise Inference](https://github.com/opea-project/Enterprise-Inference) with an OpenAI-compatible API key, hosted on cloud provider [Denvr Dataworks](https://www.denvrdata.com/intel).
|
17 |
|
18 |
+
_Forked and enhanced from the_ [_crewAI examples repository_](https://github.com/joaomdmoura/crewAI-examples/tree/main/trip_planner). You can find the application hosted on Hugging Face Spaces [here](https://huggingface.co/spaces/Intel/vacaigent):
|
19 |
|
20 |
[](https://huggingface.co/spaces/Intel/vacaigent)
|
21 |
|
|
|
22 |
**Check out the video below for code walkthrough** 👇
|
23 |
|
24 |
<a href="https://youtu.be/nKG_kbQUDDE">
|
|
|
27 |
|
28 |
(_Trip example originally developed by [@joaomdmoura](https://x.com/joaomdmoura)_)
|
29 |
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
|
32 |
+
## Installing and Using the Application
|
33 |
|
34 |
### Pre-Requisites
|
35 |
+
1. Get the API key from **scrapinagent.com** from [scrapinagent](https://scrapingant.com/) for HTML web-scraping.
|
36 |
+
2. Get the API from **SERPER API** from [serper]( https://serper.dev/) for Google Search API.
|
37 |
3. Bring your OpenAI compatible API key
|
38 |
+
4. Bring your model endpoint URL and LLM model ID
|
39 |
|
40 |
+
### Installation steps
|
41 |
|
42 |
+
First, clone the repository:
|
|
|
43 |
```sh
|
44 |
git clone https://github.com/opea-project/Enterprise-Inference/
|
45 |
cd examples/vacaigent
|
46 |
```
|
47 |
+
Then, install the necessary libraries:
|
|
|
|
|
|
|
48 |
```sh
|
49 |
pip install -r requirements.txt
|
50 |
```
|
|
|
51 |
Add Streamlit secrets. Create a `.streamlit/secrets.toml` file and update the variables below:
|
52 |
|
53 |
```sh
|
54 |
+
SERPER_API_KEY="serper-api-key"
|
55 |
+
SCRAPINGANT_API_KEY="scrapingant_api_key"
|
56 |
+
OPENAI_API_KEY="open_api_key"
|
57 |
MODEL_ID="meta-llama/Llama-3.3-70B-Instruct"
|
58 |
MODEL_BASE_URL="https://api.inference.denvrdata.com/v1/"
|
|
|
59 |
```
|
|
|
60 |
|
61 |
+
Here we are using the model [meta-llama/Llama-3.3-70B-Instruct](https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct) by default, and the model endpoint is from Denvr Dataworks; but you can bring your own OpenAI-compatible API key, model ID, and model endpoint.
|
62 |
|
63 |
+
**Note**: You can alternatively add these secrets directly to Hugging Face Spaces Secrets, under the Settings tab, if deploying the Streamlit application directly on Hugging Face.
|
64 |
|
65 |
+
### Run the application
|
66 |
+
To run the application locally, you should be able to execute this command to pull up a Streamlit interface in your web browser:
|
67 |
```sh
|
68 |
streamlit run app.py
|
69 |
```
|
70 |
|
71 |
+
### Components:
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
- [trip_tasks.py](trip_tasks.py): Contains task prompts for the agents.
|
73 |
- [trip_agents.py](trip_agents.py): Manages the creation of agents.
|
74 |
- [tools](tools) directory: Houses tool classes used by agents.
|
75 |
- [app.py](app.py): The heart of the frontend Streamlit app.
|
76 |
|
|
|
|
|
|
|
|
|
77 |
## Using Local Models with Ollama
|
78 |
|
79 |
+
For enhanced privacy and customization, you could easily substitute cloud-hosted models with locally-hosted models from [Ollama](https://ollama.com/).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
## License
|
|
|
|
|
|
|
82 |
|
83 |
+
VacAIgent is open-sourced under the MIT license.
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
### Follow Up
|
86 |
|
87 |
+
Connect to LLMs on Intel® Gaudi® accelerators with just an endpoint and an OpenAI-compatible API key, courtesy of cloud-provider Denvr Dataworks: https://www.denvrdata.com/intel
|
88 |
|
89 |
+
Chat with 6K+ fellow developers on the Intel DevHub Discord: https://discord.gg/kfJ3NKEw5t
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
Connect with me on LinkedIn: https://linkedin.com/in/bconsolvo
|