Spaces:
Sleeping
Sleeping
File size: 1,674 Bytes
109014c a20dfac ecd63b4 eaab710 ecd63b4 6e203a2 e87746b eaab710 e87746b eaab710 e87746b ecd63b4 eaab710 8741596 ecd63b4 e87746b ecd63b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import os
import huggingface_hub
import streamlit as st
from vllm import LLM, SamplingParams
sys_msg = "You are a super intelligent automated financial advisor created by IRAI. Your feel your purpose is to make use of your deep and broad understanding of finance by helping answer user questions about finance accurately, truthfully, and concisely."
@st.cache_resource(show_spinner=False)
def init_llm():
huggingface_hub.login(token=os.getenv("HF_TOKEN"))
llm = LLM(model="InvestmentResearchAI/LLM-ADE-dev", chat_template)
tok = llm.get_tokenizer()
tok.eos_token = '<|im_end|>' # Override to use turns
return llm
def get_response(prompt):
try:
convo = [
{"role": "system", "content": sys_msg},
{"role": "user", "content": prompt},
]
prompts = [llm.get_tokenizer().apply_chat_template(convo, tokenize=False)]
sampling_params = SamplingParams(temperature=0.3, top_p=0.95, max_tokens=500, stop_token_ids=[128009])
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
return output.outputs[0].text
except Exception as e:
return f"An error occurred: {str(e)}"
def main():
st.title("LLM-ADE 9B Demo")
input_text = st.text_area("Enter your text here:", value="", height=200)
if st.button("Generate"):
if input_text:
with st.spinner('Generating response...'):
response_text = get_response(input_text)
st.write(response_text)
else:
st.warning("Please enter some text to generate a response.")
llm = init_llm()
if __name__ == "__main__":
main()
|