File size: 2,173 Bytes
9efba8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import json
from typing import List, Sequence, Tuple

from langchain_core.agents import AgentAction, AgentActionMessageLog
from langchain_core.messages import AIMessage, BaseMessage, FunctionMessage

def _convert_agent_action_to_messages(
   agent_action: AgentAction, observation: str
) -> List[BaseMessage]:
   """Convert an agent action to a message.
   This code is used to reconstruct the original AI message from the agent action.
   Args:
       agent_action: Agent action to convert.
   Returns:
       AIMessage that corresponds to the original tool invocation.
   """

   if isinstance(agent_action, AgentActionMessageLog):
       return list(agent_action.message_log) + [f"<tool_response>\n{_create_function_message(agent_action, observation)}\n</tool_response>"]
   else:
       return [AIMessage(content=agent_action.log)]

def _create_function_message(
   agent_action: AgentAction, observation: str
) -> str:
   """Convert agent action and observation into a function message.
   Args:
       agent_action: the tool invocation request from the agent
       observation: the result of the tool invocation
   Returns:
       FunctionMessage that corresponds to the original tool invocation
   """

   if not isinstance(observation, str):
       try:
           content = json.dumps(observation, ensure_ascii=False)
       except Exception:
           content = str(observation)
   else:
       content = observation
   tool_response = {
       "name": agent_action.tool,
       "content": content,
   }
   return json.dumps(tool_response)

def format_to_function_messages(
   intermediate_steps: Sequence[Tuple[AgentAction, str]],
) -> List[BaseMessage]:
   """Convert (AgentAction, tool output) tuples into FunctionMessages.
   Args:
       intermediate_steps: Steps the LLM has taken to date, along with observations
   Returns:
       list of messages to send to the LLM for the next prediction
   """

   messages = []
   for agent_action, observation in intermediate_steps:
       messages.extend(_convert_agent_action_to_messages(agent_action, observation))
   return messages

# Backwards compatibility
format_to_functions = format_to_function_messages