Spaces:
Sleeping
Sleeping
import os | |
import huggingface_hub | |
import streamlit as st | |
from vllm import LLM, SamplingParams | |
template = """<|begin_of_text|><|start_header_id|>system<|end_header_id|> | |
You are a helpful financial assistant that answers the user as accurately, truthfully, and concisely as possible.<|eot_id|><|start_header_id|>user<|end_header_id|> | |
{user_message}<|eot_id|><|start_header_id|>assistant<|end_header_id|> | |
""" | |
def init_llm(): | |
huggingface_hub.login(token=os.getenv("HF_TOKEN")) | |
llm = LLM(model="InvestmentResearchAI/LLM-ADE-small-v0.1.0") | |
tok = llm.get_tokenizer() | |
tok.eos_token = '<|eot_id|>' # Override to use turns | |
return llm | |
def get_response(prompt): | |
try: | |
prompts = [template.format(user_message=prompt)] | |
sampling_params = SamplingParams(temperature=0.3, top_p=0.95) | |
outputs = llm.generate(prompts, sampling_params) | |
for output in outputs: | |
return output.outputs[0].text | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
def main(): | |
st.title("LLM-ADE 9B Demo") | |
input_text = st.text_area("Enter your text here:", value="", height=200) | |
if st.button("Generate"): | |
if input_text: | |
with st.spinner('Generating response...'): | |
response_text = get_response(input_text) | |
st.write(response_text) | |
else: | |
st.warning("Please enter some text to generate a response.") | |
llm = init_llm() | |
if __name__ == "__main__": | |
main() | |