Spaces:
Sleeping
Sleeping
WilliamGazeley
commited on
Commit
·
0583c4b
1
Parent(s):
a818c02
Update preprompt
Browse files
app.py
CHANGED
@@ -3,22 +3,17 @@ import huggingface_hub
|
|
3 |
import streamlit as st
|
4 |
from vllm import LLM, SamplingParams
|
5 |
|
6 |
-
|
7 |
-
@st.cache_data(show_spinner=False)
|
8 |
-
def get_system_message():
|
9 |
-
return """#Context:
|
10 |
-
You are an AI-based automated expert financial advisor named IRAI. You have a comprehensive understanding of finance and investing because you have trained on a extensive dataset based on of financial news, analyst reports, books, company filings, earnings call transcripts, and finance websites.
|
11 |
#Objective:
|
12 |
-
Answer questions accurately and truthfully given
|
13 |
Style and tone:
|
14 |
-
|
15 |
#Audience:
|
16 |
The questions will be asked by top technology executives and CFO of large fintech companies and successful startups.
|
17 |
#Response:
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
@st.cache_resource(show_spinner=
|
22 |
def init_llm():
|
23 |
huggingface_hub.login(token=os.getenv("HF_TOKEN"))
|
24 |
llm = LLM(model="InvestmentResearchAI/LLM-ADE-dev")
|
@@ -26,36 +21,31 @@ def init_llm():
|
|
26 |
tok.eos_token = '<|im_end|>' # Override to use turns
|
27 |
return llm
|
28 |
|
29 |
-
|
30 |
-
def get_response(prompt, custom_sys_msg):
|
31 |
try:
|
32 |
convo = [
|
33 |
-
{"role": "system", "content":
|
34 |
{"role": "user", "content": prompt},
|
35 |
]
|
|
|
36 |
prompts = [llm.get_tokenizer().apply_chat_template(convo, tokenize=False)]
|
37 |
-
sampling_params = SamplingParams(temperature=0.3, top_p=0.95, max_tokens=
|
38 |
outputs = llm.generate(prompts, sampling_params)
|
39 |
for output in outputs:
|
40 |
return output.outputs[0].text
|
41 |
except Exception as e:
|
42 |
return f"An error occurred: {str(e)}"
|
43 |
|
|
|
44 |
def main():
|
45 |
st.title("LLM-ADE 9B Demo")
|
46 |
|
47 |
-
# Retrieve the default system message
|
48 |
-
sys_msg = get_system_message()
|
49 |
-
|
50 |
-
# UI for editable preprompt
|
51 |
-
user_modified_sys_msg = st.text_area("Preprompt: ", value=sys_msg, height=200)
|
52 |
-
|
53 |
input_text = st.text_area("Enter your text here:", value="", height=200)
|
54 |
|
55 |
if st.button("Generate"):
|
56 |
if input_text:
|
57 |
with st.spinner('Generating response...'):
|
58 |
-
response_text = get_response(input_text
|
59 |
st.write(response_text)
|
60 |
else:
|
61 |
st.warning("Please enter some text to generate a response.")
|
|
|
3 |
import streamlit as st
|
4 |
from vllm import LLM, SamplingParams
|
5 |
|
6 |
+
sys_msg = """You are an expert financial advisor named IRAI. You have a comprehensive understanding of finance and investing with experience and expertise in all areas of finance.
|
|
|
|
|
|
|
|
|
7 |
#Objective:
|
8 |
+
Answer questions accurately and truthfully given your current knowledge. You do not have access to up-to-date current market data; this will be available in the future. Answer the question directly.
|
9 |
Style and tone:
|
10 |
+
Answer in a friendly and engaging manner representing a top female investment professional working at a leading investment bank.
|
11 |
#Audience:
|
12 |
The questions will be asked by top technology executives and CFO of large fintech companies and successful startups.
|
13 |
#Response:
|
14 |
+
Direct answer to question, concise yet insightful."""
|
|
|
15 |
|
16 |
+
@st.cache_resource(show_spinner="Loading model..")
|
17 |
def init_llm():
|
18 |
huggingface_hub.login(token=os.getenv("HF_TOKEN"))
|
19 |
llm = LLM(model="InvestmentResearchAI/LLM-ADE-dev")
|
|
|
21 |
tok.eos_token = '<|im_end|>' # Override to use turns
|
22 |
return llm
|
23 |
|
24 |
+
def get_response(prompt):
|
|
|
25 |
try:
|
26 |
convo = [
|
27 |
+
{"role": "system", "content": sys_msg},
|
28 |
{"role": "user", "content": prompt},
|
29 |
]
|
30 |
+
llm = init_llm()
|
31 |
prompts = [llm.get_tokenizer().apply_chat_template(convo, tokenize=False)]
|
32 |
+
sampling_params = SamplingParams(temperature=0.3, top_p=0.95, max_tokens=500, stop_token_ids=[128009])
|
33 |
outputs = llm.generate(prompts, sampling_params)
|
34 |
for output in outputs:
|
35 |
return output.outputs[0].text
|
36 |
except Exception as e:
|
37 |
return f"An error occurred: {str(e)}"
|
38 |
|
39 |
+
|
40 |
def main():
|
41 |
st.title("LLM-ADE 9B Demo")
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
input_text = st.text_area("Enter your text here:", value="", height=200)
|
44 |
|
45 |
if st.button("Generate"):
|
46 |
if input_text:
|
47 |
with st.spinner('Generating response...'):
|
48 |
+
response_text = get_response(input_text)
|
49 |
st.write(response_text)
|
50 |
else:
|
51 |
st.warning("Please enter some text to generate a response.")
|