Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from concurrent.futures import ProcessPoolExecutor | |
prompt_template = ( | |
"<|system|>\n" | |
"You are a friendly chatbot who always gives helpful, detailed, and polite answers.</s>\n" | |
"<|user|>\n" | |
"{input_text}</s>\n" | |
"<|assistant|>\n" | |
) | |
def generate_base_response(input_text): | |
base_pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T", max_length=512) | |
return base_pipe(input_text)[0]["generated_text"] | |
def generate_irai_response(input_text): | |
irai_pipe = pipeline("text-generation", model="InvestmentResearchAI/LLM-ADE_tiny-v0.001", max_length=512) | |
return irai_pipe(prompt_template.format(input_text=input_text))[0]["generated_text"].split("<|assistant|>")[1].strip() | |
def generate_response(input_text): | |
with ProcessPoolExecutor() as executor: | |
try: | |
future_base = executor.submit(generate_base_response, input_text) | |
future_irai = executor.submit(generate_irai_response, input_text) | |
base_resp = future_base.result() | |
irai_resp = future_irai.result() | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
return None, None | |
return base_resp, irai_resp | |
st.title("IRAI LLM-ADE Model vs Base Model") | |
user_input = st.text_area("Enter a financial question:", "") | |
if st.button("Generate"): | |
if user_input: | |
base_response, irai_response = generate_response(user_input) | |
col1, col2 = st.columns(2) # Updated to use `st.columns` | |
with col1: | |
st.header("Base Model Response") | |
st.text_area("", base_response, height=300) | |
with col2: | |
st.header("IRAI LLM-ADE Model Response") | |
st.text_area("", irai_response, height=300) | |
else: | |
st.warning("Please enter some text to generate a response.") | |