Spaces:
Sleeping
Sleeping
Initial app code
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "InvestmentResearchAI/LLM-ADE_tiny-v0.001"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def generate_response(input_text):
|
10 |
+
"""Generate response from the model based on the input text."""
|
11 |
+
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
12 |
+
output = model.generate(**inputs, max_length=512, num_return_sequences=1)
|
13 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
14 |
+
return response
|
15 |
+
|
16 |
+
# Streamlit interface
|
17 |
+
st.title("IRAI LLM-ADE Model")
|
18 |
+
user_input = st.text_area("Enter your text here:", "")
|
19 |
+
if st.button("Generate"):
|
20 |
+
if user_input:
|
21 |
+
response = generate_response(user_input)
|
22 |
+
st.text_area("Model Response:", response, height=300)
|
23 |
+
else:
|
24 |
+
st.warning("Please enter some text to generate a response.")
|