WilliamGazeley commited on
Commit
de1c7b8
·
verified ·
1 Parent(s): ccd2f14

Initial app code

Browse files
Files changed (1) hide show
  1. app.py +24 -0
app.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+
4
+ # Load the model and tokenizer
5
+ model_name = "InvestmentResearchAI/LLM-ADE_tiny-v0.001"
6
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
7
+ model = AutoModelForCausalLM.from_pretrained(model_name)
8
+
9
+ def generate_response(input_text):
10
+ """Generate response from the model based on the input text."""
11
+ inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
12
+ output = model.generate(**inputs, max_length=512, num_return_sequences=1)
13
+ response = tokenizer.decode(output[0], skip_special_tokens=True)
14
+ return response
15
+
16
+ # Streamlit interface
17
+ st.title("IRAI LLM-ADE Model")
18
+ user_input = st.text_area("Enter your text here:", "")
19
+ if st.button("Generate"):
20
+ if user_input:
21
+ response = generate_response(user_input)
22
+ st.text_area("Model Response:", response, height=300)
23
+ else:
24
+ st.warning("Please enter some text to generate a response.")