Spaces:
Running
Running
added first files
Browse files- app.py +445 -0
- requirements.txt +9 -0
- translation_service.py +51 -0
app.py
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import logging
|
4 |
+
import asyncio
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
from langchain.prompts import PromptTemplate
|
7 |
+
from langchain_qdrant import QdrantVectorStore
|
8 |
+
from langchain.chains import RetrievalQA
|
9 |
+
from langchain_groq import ChatGroq
|
10 |
+
from qdrant_client.models import PointStruct, VectorParams, Distance
|
11 |
+
import uuid
|
12 |
+
from qdrant_client.http import models
|
13 |
+
from datetime import datetime
|
14 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
15 |
+
from qdrant_client import QdrantClient
|
16 |
+
import cohere
|
17 |
+
from langchain.retrievers import ContextualCompressionRetriever
|
18 |
+
from langchain_cohere import CohereRerank
|
19 |
+
import re
|
20 |
+
from translation_service import TranslationService
|
21 |
+
|
22 |
+
# Load environment variables
|
23 |
+
load_dotenv()
|
24 |
+
|
25 |
+
# Initialize logging with INFO level and detailed format
|
26 |
+
logging.basicConfig(
|
27 |
+
filename='app.log',
|
28 |
+
level=logging.INFO,
|
29 |
+
format='%(asctime)s - %(levelname)s - %(message)s'
|
30 |
+
)
|
31 |
+
|
32 |
+
# Initialize services
|
33 |
+
translator = TranslationService()
|
34 |
+
|
35 |
+
def initialize_database_client():
|
36 |
+
"""Initialize Qdrant client"""
|
37 |
+
try:
|
38 |
+
client = QdrantClient(
|
39 |
+
url=os.getenv("QDURL"),
|
40 |
+
api_key=os.getenv("API_KEY1"),
|
41 |
+
verify=True # Set to True if using SSL
|
42 |
+
)
|
43 |
+
logging.info("Qdrant client initialized successfully.")
|
44 |
+
return client
|
45 |
+
except Exception as e:
|
46 |
+
logging.error(f"Failed to initialize Qdrant client: {e}")
|
47 |
+
raise
|
48 |
+
|
49 |
+
def initialize_llm():
|
50 |
+
"""Initialize LLM with fallback"""
|
51 |
+
try:
|
52 |
+
llm = ChatGroq(
|
53 |
+
temperature=0,
|
54 |
+
model_name="llama3-8b-8192",
|
55 |
+
api_key=os.getenv("GROQ_API_KEY")
|
56 |
+
)
|
57 |
+
logging.info("ChatGroq initialized with model llama3-8b-8192.")
|
58 |
+
return llm
|
59 |
+
except Exception as e:
|
60 |
+
logging.warning(f"Failed to initialize ChatGroq with llama3: {e}. Falling back to mixtral.")
|
61 |
+
try:
|
62 |
+
llm = ChatGroq(
|
63 |
+
temperature=0,
|
64 |
+
model_name="mixtral-8x7b-32768",
|
65 |
+
api_key=os.getenv("GROQ_API_KEY")
|
66 |
+
)
|
67 |
+
logging.info("ChatGroq initialized with fallback model mixtral-8x7b-32768.")
|
68 |
+
return llm
|
69 |
+
except Exception as fallback_e:
|
70 |
+
logging.error(f"Failed to initialize fallback LLM: {fallback_e}")
|
71 |
+
raise
|
72 |
+
|
73 |
+
def initialize_services():
|
74 |
+
"""Initialize all services"""
|
75 |
+
try:
|
76 |
+
# Initialize Qdrant client
|
77 |
+
client = initialize_database_client()
|
78 |
+
|
79 |
+
# Initialize embeddings
|
80 |
+
embeddings = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
|
81 |
+
logging.info("FastEmbedEmbeddings initialized successfully.")
|
82 |
+
|
83 |
+
# Initialize Qdrant DB
|
84 |
+
db = QdrantVectorStore(
|
85 |
+
client=client,
|
86 |
+
embedding=embeddings,
|
87 |
+
collection_name="RR3"
|
88 |
+
)
|
89 |
+
logging.info("QdrantVectorStore initialized with collection 'RR3'.")
|
90 |
+
|
91 |
+
# Initialize retriever with reranker
|
92 |
+
cohere_client = cohere.Client(api_key=os.getenv("COHERE_API_KEY"))
|
93 |
+
reranker = CohereRerank(
|
94 |
+
client=cohere_client,
|
95 |
+
top_n=3,
|
96 |
+
model="rerank-multilingual-v3.0"
|
97 |
+
)
|
98 |
+
base_retriever = db.as_retriever(search_kwargs={"k": 14})
|
99 |
+
retriever = ContextualCompressionRetriever(
|
100 |
+
base_compressor=reranker,
|
101 |
+
base_retriever=base_retriever
|
102 |
+
)
|
103 |
+
logging.info("Retriever with reranker initialized successfully.")
|
104 |
+
|
105 |
+
# Initialize LLM
|
106 |
+
llm = initialize_llm()
|
107 |
+
|
108 |
+
return retriever, llm
|
109 |
+
except Exception as e:
|
110 |
+
logging.error(f"Service initialization error: {str(e)}")
|
111 |
+
raise
|
112 |
+
|
113 |
+
def initialize_feedback_collection():
|
114 |
+
"""Initialize and verify feedback collection"""
|
115 |
+
try:
|
116 |
+
client = initialize_database_client()
|
117 |
+
|
118 |
+
# Check if collection exists
|
119 |
+
collections = client.get_collections().collections
|
120 |
+
collection_exists = any(c.name == "chat_feedback" for c in collections)
|
121 |
+
|
122 |
+
if not collection_exists:
|
123 |
+
# Create collection with proper configuration
|
124 |
+
client.create_collection(
|
125 |
+
collection_name="chat_feedback",
|
126 |
+
vectors_config=VectorParams(
|
127 |
+
size=768, # Ensure this matches the embedding size
|
128 |
+
distance=Distance.COSINE
|
129 |
+
)
|
130 |
+
)
|
131 |
+
logging.info("Created 'chat_feedback' collection with vector size 768 and Cosine distance.")
|
132 |
+
else:
|
133 |
+
logging.info("'chat_feedback' collection already exists.")
|
134 |
+
|
135 |
+
# Verify collection exists and has correct configuration
|
136 |
+
collection_info = client.get_collection("chat_feedback")
|
137 |
+
if collection_info.config.params.vectors.size != 768:
|
138 |
+
raise ValueError("Incorrect vector size in 'chat_feedback' collection.")
|
139 |
+
logging.info("'chat_feedback' collection verified successfully with correct vector size.")
|
140 |
+
|
141 |
+
return True
|
142 |
+
except Exception as e:
|
143 |
+
logging.error(f"Failed to initialize feedback collection: {e}")
|
144 |
+
raise
|
145 |
+
|
146 |
+
async def submit_feedback(feedback_type, chat_history, language_choice):
|
147 |
+
"""Submit feedback with improved error handling and logging."""
|
148 |
+
try:
|
149 |
+
if not chat_history or len(chat_history) < 2:
|
150 |
+
logging.warning("Attempted to submit feedback with insufficient chat history.")
|
151 |
+
return "No recent interaction to provide feedback for."
|
152 |
+
|
153 |
+
# Get last question and answer
|
154 |
+
last_interaction = chat_history[-2:]
|
155 |
+
question = last_interaction[0].get("content", "").strip()
|
156 |
+
answer = last_interaction[1].get("content", "").strip()
|
157 |
+
|
158 |
+
if not question or not answer:
|
159 |
+
logging.warning("Question or answer content is missing.")
|
160 |
+
return "Incomplete interaction data. Cannot submit feedback."
|
161 |
+
|
162 |
+
logging.info(f"Processing feedback for question: {question[:50]}...")
|
163 |
+
|
164 |
+
# Initialize client
|
165 |
+
client = initialize_database_client()
|
166 |
+
|
167 |
+
# Create point ID
|
168 |
+
point_id = str(uuid.uuid4())
|
169 |
+
|
170 |
+
# Create payload
|
171 |
+
payload = {
|
172 |
+
"question": question,
|
173 |
+
"answer": answer,
|
174 |
+
"language": language_choice,
|
175 |
+
"timestamp": datetime.utcnow().isoformat(),
|
176 |
+
"feedback": feedback_type
|
177 |
+
}
|
178 |
+
|
179 |
+
# Initialize embeddings
|
180 |
+
embeddings = FastEmbedEmbeddings(model_name="nomic-ai/nomic-embed-text-v1.5-Q")
|
181 |
+
|
182 |
+
# Create embeddings for the Q&A pair
|
183 |
+
try:
|
184 |
+
embedding_text = f"{question} {answer}"
|
185 |
+
vector = await asyncio.to_thread(embeddings.embed_query, embedding_text)
|
186 |
+
logging.info(f"Generated embedding vector of length {len(vector)}.")
|
187 |
+
except Exception as embed_error:
|
188 |
+
logging.error(f"Embedding generation failed: {embed_error}")
|
189 |
+
return "Failed to generate embeddings for your feedback."
|
190 |
+
|
191 |
+
if not isinstance(vector, list) or not vector:
|
192 |
+
logging.error("Invalid vector generated from embeddings.")
|
193 |
+
return "Failed to generate valid embeddings for your feedback."
|
194 |
+
|
195 |
+
# Create point
|
196 |
+
point = PointStruct(
|
197 |
+
id=point_id,
|
198 |
+
payload=payload,
|
199 |
+
vector=vector
|
200 |
+
)
|
201 |
+
|
202 |
+
# Store in Qdrant
|
203 |
+
try:
|
204 |
+
operation_info = await asyncio.to_thread(
|
205 |
+
client.upsert,
|
206 |
+
collection_name="chat_feedback",
|
207 |
+
points=[point]
|
208 |
+
)
|
209 |
+
logging.info(f"Feedback submitted successfully: {point_id}")
|
210 |
+
return "Thanks for your feedback! Your response has been recorded."
|
211 |
+
except Exception as db_error:
|
212 |
+
logging.error(f"Failed to upsert point to Qdrant: {db_error}")
|
213 |
+
return "Sorry, there was an error submitting your feedback."
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
logging.error(f"Unexpected error in submit_feedback: {e}")
|
217 |
+
return "Sorry, there was an unexpected error submitting your feedback."
|
218 |
+
|
219 |
+
# Initialize services and feedback collection
|
220 |
+
try:
|
221 |
+
retriever, llm = initialize_services()
|
222 |
+
initialize_feedback_collection()
|
223 |
+
except Exception as initialization_error:
|
224 |
+
logging.critical(f"Initialization failed: {initialization_error}")
|
225 |
+
raise
|
226 |
+
|
227 |
+
# Prompt template
|
228 |
+
prompt_template = PromptTemplate(
|
229 |
+
template="""You are RRA Assistant, created by Cedric to help users get tax related information in Rwanda. Your task is to answer tax-related questions using the provided context.
|
230 |
+
|
231 |
+
Context: {context}
|
232 |
+
|
233 |
+
User's Question: {question}
|
234 |
+
|
235 |
+
Please follow these steps to answer the question:
|
236 |
+
|
237 |
+
Step 1: Analyze the question
|
238 |
+
Briefly explain your understanding of the question and any key points to address. If it is hi or hello, skip to step 3 and respond with a greeting.
|
239 |
+
|
240 |
+
Step 2: Provide relevant information
|
241 |
+
Using the context provided, give detailed information related to the question. Include specific facts, figures, or explanations from the context.
|
242 |
+
|
243 |
+
Step 3: Final answer
|
244 |
+
Provide a clear, concise answer to the original question. Start directly with the relevant information, avoiding phrases like "In summary" or "To conclude".
|
245 |
+
|
246 |
+
Remember:
|
247 |
+
- If you don't know the answer or can't find relevant information in the context, say so honestly.
|
248 |
+
- Do not make up information.
|
249 |
+
- Use the provided context to support your answer.
|
250 |
+
- Include "For more information, call 3004" at the end of every answer.
|
251 |
+
|
252 |
+
Your response:
|
253 |
+
""",
|
254 |
+
input_variables=['context', 'question']
|
255 |
+
)
|
256 |
+
|
257 |
+
async def process_query(message: str, language: str, chat_history: list) -> str:
|
258 |
+
try:
|
259 |
+
# Handle translation based on selected language
|
260 |
+
if language == "Kinyarwanda":
|
261 |
+
query = translator.translate(message, "rw", "en")
|
262 |
+
logging.info(f"Translated query to English: {query}")
|
263 |
+
else:
|
264 |
+
query = message
|
265 |
+
|
266 |
+
# Create QA chain
|
267 |
+
qa = RetrievalQA.from_chain_type(
|
268 |
+
llm=llm,
|
269 |
+
chain_type="stuff",
|
270 |
+
retriever=retriever,
|
271 |
+
chain_type_kwargs={"prompt": prompt_template},
|
272 |
+
return_source_documents=True
|
273 |
+
)
|
274 |
+
|
275 |
+
# Get response
|
276 |
+
response = await asyncio.to_thread(
|
277 |
+
lambda: qa.invoke({"query": query})
|
278 |
+
)
|
279 |
+
logging.info("QA chain invoked successfully.")
|
280 |
+
|
281 |
+
# Extract final answer
|
282 |
+
result_text = response.get('result', '')
|
283 |
+
final_answer_start = result_text.find("Step 3: Final answer")
|
284 |
+
if final_answer_start != -1:
|
285 |
+
answer = result_text[final_answer_start + len("Step 3: Final answer"):].strip()
|
286 |
+
else:
|
287 |
+
answer = result_text
|
288 |
+
|
289 |
+
# Clean up the answer
|
290 |
+
answer = re.sub(r'\*\*', '', answer).strip()
|
291 |
+
answer = re.sub(r'Step \d+:', '', answer).strip()
|
292 |
+
|
293 |
+
# Translate response if needed
|
294 |
+
if language == "Kinyarwanda":
|
295 |
+
answer = translator.translate(answer, "en", "rw")
|
296 |
+
logging.info(f"Translated answer to Kinyarwanda: {answer}")
|
297 |
+
|
298 |
+
return answer
|
299 |
+
except Exception as e:
|
300 |
+
logging.error(f"Query processing error: {str(e)}")
|
301 |
+
return f"An error occurred: {str(e)}"
|
302 |
+
|
303 |
+
# Define separate feedback submission functions to pass feedback type correctly
|
304 |
+
async def submit_positive_feedback(chat_history, language_choice):
|
305 |
+
return await submit_feedback("positive", chat_history, language_choice)
|
306 |
+
|
307 |
+
async def submit_negative_feedback(chat_history, language_choice):
|
308 |
+
return await submit_feedback("negative", chat_history, language_choice)
|
309 |
+
|
310 |
+
# Create Gradio interface
|
311 |
+
with gr.Blocks(title="RRA FAQ Chatbot") as demo:
|
312 |
+
gr.Markdown(
|
313 |
+
"""
|
314 |
+
# RRA FAQ Chatbot
|
315 |
+
Ask tax-related questions in English or Kinyarwanda
|
316 |
+
> 🔒 Your questions and interactions remain private unless you choose to submit feedback, which helps improve our service.
|
317 |
+
"""
|
318 |
+
)
|
319 |
+
|
320 |
+
# Add language selector
|
321 |
+
language = gr.Radio(
|
322 |
+
choices=["English", "Kinyarwanda"],
|
323 |
+
value="English",
|
324 |
+
label="Select Language / Hitamo Ururimi"
|
325 |
+
)
|
326 |
+
|
327 |
+
chatbot = gr.Chatbot(
|
328 |
+
value=[],
|
329 |
+
show_label=False,
|
330 |
+
height=400,
|
331 |
+
type='messages'
|
332 |
+
)
|
333 |
+
|
334 |
+
with gr.Row():
|
335 |
+
msg = gr.Textbox(
|
336 |
+
label="Ask your question",
|
337 |
+
placeholder="Type your tax-related question here...",
|
338 |
+
show_label=False
|
339 |
+
)
|
340 |
+
submit = gr.Button("Send")
|
341 |
+
|
342 |
+
# Add feedback section
|
343 |
+
with gr.Row():
|
344 |
+
with gr.Column(scale=2):
|
345 |
+
feedback_label = gr.Markdown("Was this response helpful?")
|
346 |
+
with gr.Column(scale=1):
|
347 |
+
feedback_positive = gr.Button("👍 Helpful")
|
348 |
+
with gr.Column(scale=1):
|
349 |
+
feedback_negative = gr.Button("👎 Not Helpful")
|
350 |
+
|
351 |
+
# Add feedback status message
|
352 |
+
feedback_status = gr.Markdown("")
|
353 |
+
|
354 |
+
# Connect feedback buttons to their respective functions
|
355 |
+
feedback_positive.click(
|
356 |
+
fn=submit_positive_feedback,
|
357 |
+
inputs=[chatbot, language],
|
358 |
+
outputs=feedback_status
|
359 |
+
)
|
360 |
+
|
361 |
+
feedback_negative.click(
|
362 |
+
fn=submit_negative_feedback,
|
363 |
+
inputs=[chatbot, language],
|
364 |
+
outputs=feedback_status
|
365 |
+
)
|
366 |
+
|
367 |
+
# Create two sets of examples
|
368 |
+
with gr.Row() as english_examples_row:
|
369 |
+
gr.Examples(
|
370 |
+
examples=[
|
371 |
+
"What is VAT in Rwanda?",
|
372 |
+
"How do I register for taxes?",
|
373 |
+
"What are the tax payment deadlines?",
|
374 |
+
"How can I get a TIN number?",
|
375 |
+
"How do I get purchase code?"
|
376 |
+
],
|
377 |
+
inputs=msg,
|
378 |
+
label="English Examples"
|
379 |
+
)
|
380 |
+
|
381 |
+
with gr.Row(visible=False) as kinyarwanda_examples_row:
|
382 |
+
gr.Examples(
|
383 |
+
examples=[
|
384 |
+
"Ese VAT ni iki mu Rwanda?",
|
385 |
+
"Nabona TIN number nte?",
|
386 |
+
"Ni ryari tugomba kwishyura imisoro?",
|
387 |
+
"Ese nandikwa nte ku musoro?",
|
388 |
+
"Ni gute nabone kode yo kugura?"
|
389 |
+
],
|
390 |
+
inputs=msg,
|
391 |
+
label="Kinyarwanda Examples"
|
392 |
+
)
|
393 |
+
|
394 |
+
async def respond(message, lang, chat_history):
|
395 |
+
bot_message = await process_query(message, lang, chat_history)
|
396 |
+
chat_history.append({"role": "user", "content": message})
|
397 |
+
chat_history.append({"role": "assistant", "content": bot_message})
|
398 |
+
return "", chat_history
|
399 |
+
|
400 |
+
def toggle_language_interface(language_choice):
|
401 |
+
if language_choice == "English":
|
402 |
+
placeholder_text = "Type your tax-related question here..."
|
403 |
+
return {
|
404 |
+
msg: gr.update(placeholder=placeholder_text),
|
405 |
+
english_examples_row: gr.update(visible=True),
|
406 |
+
kinyarwanda_examples_row: gr.update(visible=False)
|
407 |
+
}
|
408 |
+
else:
|
409 |
+
placeholder_text = "Andika ibibazo bijyanye n'umusoro hano"
|
410 |
+
return {
|
411 |
+
msg: gr.update(placeholder=placeholder_text),
|
412 |
+
english_examples_row: gr.update(visible=False),
|
413 |
+
kinyarwanda_examples_row: gr.update(visible=True)
|
414 |
+
}
|
415 |
+
|
416 |
+
msg.submit(respond, [msg, language, chatbot], [msg, chatbot])
|
417 |
+
submit.click(respond, [msg, language, chatbot], [msg, chatbot])
|
418 |
+
|
419 |
+
# Update both examples visibility and placeholder when language changes
|
420 |
+
language.change(
|
421 |
+
fn=toggle_language_interface,
|
422 |
+
inputs=language,
|
423 |
+
outputs=[msg, english_examples_row, kinyarwanda_examples_row]
|
424 |
+
)
|
425 |
+
|
426 |
+
gr.Markdown(
|
427 |
+
"""
|
428 |
+
### About
|
429 |
+
- Created by: [Cedric](mailto:[email protected])
|
430 |
+
- Data source: [RRA Website FAQ](https://www.rra.gov.rw/en/domestic-tax-services/faqs)
|
431 |
+
|
432 |
+
**Disclaimer:** This chatbot provides general tax information. For official guidance,
|
433 |
+
consult RRA or call 3004.
|
434 |
+
🔒 **Privacy:** Your interactions remain private unless you choose to submit feedback.
|
435 |
+
"""
|
436 |
+
)
|
437 |
+
|
438 |
+
# Launch the app
|
439 |
+
if __name__ == "__main__":
|
440 |
+
try:
|
441 |
+
demo.launch(share=False)
|
442 |
+
logging.info("Gradio app launched successfully.")
|
443 |
+
except Exception as launch_error:
|
444 |
+
logging.critical(f"Failed to launch Gradio app: {launch_error}")
|
445 |
+
raise
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=4.14.0
|
2 |
+
python-dotenv>=1.0.0
|
3 |
+
langchain>=0.1.0
|
4 |
+
langchain-community>=0.0.13
|
5 |
+
langchain-groq>=0.1.1
|
6 |
+
cohere>=4.37
|
7 |
+
qdrant-client>=1.7.0
|
8 |
+
requests>=2.31.0
|
9 |
+
fastembeddings>=0.0.11
|
translation_service.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
import requests
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
class TranslationRequest(BaseModel):
|
11 |
+
src: str
|
12 |
+
tgt: str
|
13 |
+
use_multi: str
|
14 |
+
text: str
|
15 |
+
|
16 |
+
class Config:
|
17 |
+
populate_by_name = True
|
18 |
+
|
19 |
+
class TranslationService:
|
20 |
+
def __init__(self):
|
21 |
+
self.api_url = os.getenv('TRANSLATION_API_URL')
|
22 |
+
if not self.api_url:
|
23 |
+
raise ValueError("TRANSLATION_API_URL environment variable is not set")
|
24 |
+
|
25 |
+
def translate(self, text: str, src_language: str, tgt_language: str) -> str:
|
26 |
+
try:
|
27 |
+
payload = TranslationRequest(
|
28 |
+
src=src_language,
|
29 |
+
tgt=tgt_language,
|
30 |
+
use_multi="MULTI",
|
31 |
+
text=text
|
32 |
+
)
|
33 |
+
|
34 |
+
response = requests.post(
|
35 |
+
self.api_url,
|
36 |
+
headers={
|
37 |
+
"accept": "application/json",
|
38 |
+
"Content-Type": "application/json"
|
39 |
+
},
|
40 |
+
json=payload.model_dump()
|
41 |
+
)
|
42 |
+
|
43 |
+
if response.status_code == 200:
|
44 |
+
return response.json().get("translation")
|
45 |
+
elif response.status_code == 406:
|
46 |
+
raise ValueError("Invalid language pair selected")
|
47 |
+
else:
|
48 |
+
raise ValueError(f"Translation failed with status code {response.status_code}")
|
49 |
+
except Exception as e:
|
50 |
+
logging.error(f"Translation error: {str(e)}")
|
51 |
+
return text
|