File size: 4,183 Bytes
79b4e95
 
 
 
 
 
 
 
 
 
0efbb5e
79b4e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0efbb5e
 
 
 
 
 
 
 
79b4e95
 
0efbb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79b4e95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0efbb5e
79b4e95
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import streamlit as st
import pdfplumber
from PIL import Image
import pytesseract
#from transformers import pipeline
import io

import os
from dotenv import load_dotenv

from groqSummarizer import GroqSummarizer

# SwedishBeagle-dare
from transformers import AutoTokenizer
import transformers
import torch

class Summarizer:

    def __init__(self, model = "groq"):
        self.model = model

    def run_app(self):
        uploaded_file = st.file_uploader("Upload an Image or PDF", type=["jpg", "jpeg", "png", "pdf"])
    
        if uploaded_file is not None:
            if uploaded_file.type == "application/pdf":
                with st.spinner("Extracting text from PDF..."):
                    text = self.extract_text_from_pdf(uploaded_file)
            else:
                image = Image.open(uploaded_file)
                with st.spinner("Extracting text from image..."):
                    text = self.extract_text_from_image(image)
    
            if text:
                with st.spinner("Summarizing text..."):
                    summary = self.summarize_using_groq(text)
                st.subheader("Summary")
                st.write(summary)
    
            st.subheader("Extracted Text")
            st.write(text)


    # Function to extract text from an image
    def extract_text_from_image(self, image):
        text = pytesseract.image_to_string(image)
        return text
    
    # Function to extract text from a PDF
    def extract_text_from_pdf(self, pdf):
        text = ""
        with pdfplumber.open(pdf) as pdf_file:
            for page in pdf_file.pages:
                text += page.extract_text()
        return text

    def shorten_text(self, text, max_tokens):
        tokens = text.split(" ")
        if len(tokens) > max_tokens:
            tokens = tokens[:max_tokens]
            text = " ".join(tokens)
        print("Shortened text to " + str(max_tokens) + " tokens")
        return text

    def summarize_using_groq(self, text):
        # Decrease the number of tokens if the response is 429, i.e. too many tokens in the request
        # 
        # https://context.ai/compare/llama3-70b-instruct-v1/gpt-4
        # ^^ Säger att max tokens är 8000, men efter tester så verkar det vara 
        # närmare 2000 om man räknar att tokens är separerade med blanksteg. 
        # (Detta är inte ett helt korrekt sätt att räkna det)
        
        # max_tokens = 8000
        max_tokens = 2000

        while True:
            try:
                gs = GroqSummarizer()
                return gs.summarize(text)
            except Exception as e:
                if e.response.status_code == 429:
                    text = self.shorten_text(text, max_tokens)
                    max_tokens = int(max_tokens * 0.9)
                else:
                    return "Error: " + str(e)

    def summarize_using_swedishbeagle(self, text):
        # https://huggingface.co/FredrikBL/SwedishBeagle-dare

        model = "FredrikBL/SwedishBeagle-dare"
        messages = [
            {
                "role": "system", 
                "content": "You summarize texts that the users sends"
            }, 
            {
                "role": "user", 
                "content": text
            }
        ]

        tokenizer = AutoTokenizer.from_pretrained(model)
        prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
        pipeline = transformers.pipeline(
            "text-generation",
            model=model,
            torch_dtype=torch.float16,
            device_map="auto",
        )

        outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
        return outputs[0]["generated_text"]

    def summarize(self, text):
        if(self.model == "groq"):
            return self.summarize_using_groq(text)
        elif(self.model == "SwedishBeagle-dare"):
            return self.summarize_using_swedishbeagle(text)
        

# Streamlit app
def main():
    # Models:
    # - groq
    # - SwedishBeagle-dare
    summarizer = Summarizer(model = "groq")
    summarizer.run_app()

if __name__ == "__main__":
    main()