Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer
|
2 |
+
import torch
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
|
6 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
7 |
+
tokenizer.pad_token = tokenizer.eos_token
|
8 |
+
|
9 |
+
model = torch.load("poem_model.pt")
|
10 |
+
|
11 |
+
def infer(inp):
|
12 |
+
inp = tokenizer(inp,return_tensors="pt")
|
13 |
+
X = inp["input_ids"] #.to(device)
|
14 |
+
a = inp["attention_mask"] #.to(device)
|
15 |
+
output = model.generate(X,
|
16 |
+
attention_mask=a,
|
17 |
+
max_length=100,
|
18 |
+
min_length=10,
|
19 |
+
early_stopping=True,
|
20 |
+
num_beams=5,
|
21 |
+
no_repeat_ngram_size=2)
|
22 |
+
|
23 |
+
output = tokenizer.decode(output[0])
|
24 |
+
|
25 |
+
return output
|
26 |
+
|
27 |
+
|
28 |
+
output = infer(" I shall go")
|
29 |
+
text = st.text_area(output)
|
30 |
+
|
31 |
+
st.json(text)
|