Spaces:
Sleeping
Sleeping
File size: 11,399 Bytes
0a1cbe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
from transformers import pipeline
from functools import partial
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sentence_transformers import SentenceTransformer
import torch
import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
import penman
from collections import Counter, defaultdict
import networkx as nx
from networkx.drawing.nx_agraph import pygraphviz_layout
from transformers import pipeline
from functools import partial
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sentence_transformers import SentenceTransformer
import torch
import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
import penman
from collections import Counter, defaultdict
import networkx as nx
from networkx.drawing.nx_agraph import pygraphviz_layout
class FramingLabels:
def __init__(self, base_model, candidate_labels, batch_size=16):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.base_pipeline = pipeline("zero-shot-classification", model=base_model, device=device)
self.candidate_labels = candidate_labels
self.classifier = partial(self.base_pipeline, candidate_labels=candidate_labels, multi_label=True, batch_size=batch_size)
def order_scores(self, dic):
indices_order = [dic["labels"].index(l) for l in self.candidate_labels]
scores_ordered = np.array(dic["scores"])[indices_order].tolist()
return scores_ordered
def get_ordered_scores(self, sequence_to_classify):
if type(sequence_to_classify) == list:
res = []
for out in tqdm.tqdm(self.classifier(sequence_to_classify)):
res.append(out)
else:
res = self.classifier(sequence_to_classify)
if type(res) == list:
scores_ordered = list(map(self.order_scores, res))
scores_ordered = list(map(list, zip(*scores_ordered))) # reorder
else:
scores_ordered = self.order_scores(res)
return scores_ordered
def get_label_names(self):
label_names = [l.split(":")[0].split(" ")[0] for l in self.candidate_labels]
return label_names
def __call__(self, sequence_to_classify):
scores = self.get_ordered_scores(sequence_to_classify)
label_names = self.get_label_names()
return dict(zip(label_names, scores))
def visualize(self, name_to_score_dict, threshold=0.5, **kwargs):
fig, ax = plt.subplots()
cp = sns.color_palette()
scores_ordered = list(name_to_score_dict.values())
label_names = list(name_to_score_dict.keys())
colors = [cp[0] if s > 0.5 else cp[1] for s in scores_ordered]
ax.barh(label_names[::-1], scores_ordered[::-1], color=colors[::-1], **kwargs)
return fig, ax
class FramingDimensions:
def __init__(self, base_model, dimensions, pole_names):
self.encoder = SentenceTransformer(base_model)
self.dimensions = dimensions
self.dim_embs = self.encoder.encode(dimensions)
self.pole_names = pole_names
self.axis_names = list(map(lambda x: x[0] + "/" + x[1], pole_names))
axis_embs = []
for pole1, pole2 in pole_names:
p1 = self.get_dimension_names().index(pole1)
p2 = self.get_dimension_names().index(pole2)
axis_emb = self.dim_embs[p1] - self.dim_embs[p2]
axis_embs.append(axis_emb)
self.axis_embs = np.stack(axis_embs)
def get_dimension_names(self):
dimension_names = [l.split(":")[0].split(" ")[0] for l in self.dimensions]
return dimension_names
def __call__(self, sequence_to_align):
embs = self.encoder.encode(sequence_to_align)
scores = embs @ self.axis_embs.T
named_scores = dict(zip(self.pole_names, scores.T))
return named_scores
def visualize(self, align_scores_df, **kwargs):
name_left = align_scores_df.columns.map(lambda x: x[1])
name_right = align_scores_df.columns.map(lambda x: x[0])
bias = align_scores_df.mean()
color = ["b" if x > 0 else "r" for x in bias]
inten = (align_scores_df.var().fillna(0)+0.001)*50_000
bounds = bias.abs().max()*1.1
fig = plt.figure()
ax = fig.add_subplot(111)
plt.scatter(x=bias, y=name_left, s=inten, c=color)
plt.axvline(0)
plt.xlim(-bounds, bounds)
plt.gca().invert_yaxis()
axi = ax.twinx()
axi.set_ylim(ax.get_ylim())
axi.set_yticks(ax.get_yticks(), labels=name_right)
return fig
class FramingStructure:
def __init__(self, base_model, roles=None):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
pipe2 = pipeline("text2text-generation", base_model, device=device, max_length=300)
def __call__(self, sequence_to_translate):
res = self.translator(sequence_to_translate)
def try_decode(x):
try:
return penman.decode(x["generated_text"])
except:
return None
graphs = list(filter(lambda item: item is not None, [try_decode(x) for x in res]))
return graphs
def visualize(self, decoded_graphs, min_node_threshold=1, **kwargs):
cnt = Counter()
for gen_text in decoded_graphs:
amr = gen_text.triples
amr = list(filter(lambda x: x[2] is not None, amr))
amr = list(map(lambda x: (x[0], x[1].replace(":", ""), x[2]), amr))
def trim_distinction_end(x):
x = x.split("_")[0]
return x
amr = list(map(lambda x: (trim_distinction_end(x[0]), x[1], trim_distinction_end(x[2])), amr))
cnt.update(amr)
G = nx.DiGraph()
color_map = defaultdict(lambda: "k", {
"ARG0": "y",
"ARG1": "r",
"ARG2": "g",
"ARG3": "b"
})
for entry, num in cnt.items():
if not G.has_node(entry[0]):
G.add_node(entry[0], weight=0)
if not G.has_node(entry[2]):
G.add_node(entry[2], weight=0)
G.nodes[entry[0]]["weight"] += num
G.nodes[entry[2]]["weight"] += num
G.add_edge(entry[0], entry[2], role=entry[1], weight=num, color=color_map[entry[1]])
G_sub = nx.subgraph_view(G, filter_node=lambda n: G.nodes[n]["weight"] >= min_node_threshold)
node_sizes = [x * 100 for x in nx.get_node_attributes(G_sub,'weight').values()]
edge_colors = nx.get_edge_attributes(G_sub,'color').values()
fig = plt.figure()
pos = pygraphviz_layout(G_sub, prog="dot")
nx.draw_networkx(G_sub, pos, node_size=node_sizes, edge_color=edge_colors)
nx.draw_networkx_labels(G_sub, pos)
nx.draw_networkx_edge_labels(G_sub, pos, edge_labels=nx.get_edge_attributes(G_sub, "role"))
return fig
# Specify the models
base_model_1 = "facebook/bart-large-mnli"
base_model_2 = 'all-mpnet-base-v2'
base_model_3 = "Iseratho/model_parse_xfm_bart_base-v0_1_0"
# https://homes.cs.washington.edu/~nasmith/papers/card+boydstun+gross+resnik+smith.acl15.pdf
candidate_labels = [
"Economic: costs, benefits, or other financial implications",
"Capacity and resources: availability of physical, human or financial resources, and capacity of current systems",
"Morality: religious or ethical implications",
"Fairness and equality: balance or distribution of rights, responsibilities, and resources",
"Legality, constitutionality and jurisprudence: rights, freedoms, and authority of individuals, corporations, and government",
"Policy prescription and evaluation: discussion of specific policies aimed at addressing problems",
"Crime and punishment: effectiveness and implications of laws and their enforcement",
"Security and defense: threats to welfare of the individual, community, or nation",
"Health and safety: health care, sanitation, public safety",
"Quality of life: threats and opportunities for the individual’s wealth, happiness, and well-being",
"Cultural identity: traditions, customs, or values of a social group in relation to a policy issue",
"Public opinion: attitudes and opinions of the general public, including polling and demographics",
"Political: considerations related to politics and politicians, including lobbying, elections, and attempts to sway voters",
"External regulation and reputation: international reputation or foreign policy of the U.S.",
"Other: any coherent group of frames not covered by the above categories",
]
# https://osf.io/xakyw
dimensions = [
"Care: ...acted with kindness, compassion, or empathy, or nurtured another person.",
"Harm: ...acted with cruelty, or hurt or harmed another person/animal and caused suffering.",
"Fairness: ...acted in a fair manner, promoting equality, justice, or rights.",
"Cheating: ...was unfair or cheated, or caused an injustice or engaged in fraud.",
"Loyalty: ...acted with fidelity, or as a team player, or was loyal or patriotic.",
"Betrayal: ...acted disloyal, betrayed someone, was disloyal, or was a traitor.",
"Authority: ...obeyed, or acted with respect for authority or tradition.",
"Subversion: ...disobeyed or showed disrespect, or engaged in subversion or caused chaos.",
"Sanctity: ...acted in a way that was wholesome or sacred, or displayed purity or sanctity.",
"Degredation: ...was depraved, degrading, impure, or unnatural.",
]
pole_names = [
("Care", "Harm"),
("Fairness", "Cheating"),
("Loyalty", "Betrayal"),
("Authority", "Subversion"),
("Sanctity", "Degredation"),
]
framing_label_model = FramingLabels(base_model_1, candidate_labels)
framing_dimen_model = FramingDimensions(base_model_2, dimensions, pole_names)
framing_struc_model = FramingStructure(base_model_3)
import pandas as pd
async def framing_single(text):
fig1, _ = framing_label_model.visualize(framing_label_model(text))
fig2 = framing_dimen_model.visualize(pd.DataFrame({k: [v] for k, v in framing_dimen_model(text).items()}))
fig3 = framing_struc_model.visualize(framing_struc_model(text))
return fig1, fig2, fig3
example_list = ["In 2021, doctors prevented the spread of the virus by vaccinating with Pfizer.",
"We must fight for our freedom.",
"The government prevents our freedom.",
"They prevent the spread.",
"We fight the virus.",
"I believe that we should act now. There is no time to waste."
]
demo = gr.Interface(fn=framing_single,
title="FrameFinder",
inputs=gr.Textbox(label="Text to analyze."),
description="A simple tool that helps you find (discover and detect) frames in text.",
examples=example_list,
article="Check out the preliminary article in the [Web Conference Symposium](https://dl.acm.org/doi/pdf/10.1145/3543873.3587534), will be updated to currently in review article after publication.",
outputs=[gr.Plot(label="Label"),
gr.Plot(label="Dimensions"),
gr.Plot(label="Structure")
])
demo.launch()
|