Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from keras.models import load_model
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from keras.preprocessing.image import img_to_array
|
6 |
+
|
7 |
+
def preprocess_image(img, target_size): # Reuse your function with `img` as input
|
8 |
+
image = cv2.resize(img, target_size)
|
9 |
+
image = img_to_array(image)
|
10 |
+
image = image.astype('float32') / 255.0
|
11 |
+
image = np.expand_dims(image, axis=0)
|
12 |
+
return image
|
13 |
+
|
14 |
+
# Load the model (outside the main app loop for efficiency)
|
15 |
+
model_path = 'C:\\Users\\Istifadeci\Desktop\\Deepfake_konfrans\\xception_deepfake_image_main.h5'
|
16 |
+
model = load_model(model_path)
|
17 |
+
target_size = (224, 224) # Your model's input size
|
18 |
+
|
19 |
+
st.title("Deepfake Detection App")
|
20 |
+
|
21 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
22 |
+
|
23 |
+
if uploaded_file is not None:
|
24 |
+
# Convert the file to an OpenCV image
|
25 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
26 |
+
opencv_image = cv2.imdecode(file_bytes, 1)
|
27 |
+
|
28 |
+
# Display the image
|
29 |
+
st.image(opencv_image, channels="BGR") # OpenCV uses BGR format
|
30 |
+
|
31 |
+
# Preprocess the image
|
32 |
+
preprocessed_image = preprocess_image(opencv_image, target_size)
|
33 |
+
|
34 |
+
# Make a prediction
|
35 |
+
prediction = model.predict(preprocessed_image)
|
36 |
+
if prediction[0] > 0.1:
|
37 |
+
st.error("The image is predicted as 'FAKE'")
|
38 |
+
else:
|
39 |
+
st.success("The image is predicted as 'REAL'")
|