Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
from pdfminer.high_level import extract_text | |
def main(): | |
st.title("PDF Translation") | |
# Upload the pdf | |
uploaded_file = st.file_uploader("Upload a PDF file and we will translate the text inside to German and French.", type=["pdf"]) | |
if uploaded_file is not None: | |
# Extract text from pdf | |
text = extract_text(uploaded_file) | |
tokenizer = T5Tokenizer.from_pretrained("t5-small") | |
model = T5ForConditionalGeneration.from_pretrained("t5-small") | |
# Define translation prefixes for each language | |
translation_prefixes = { | |
"german": "translate English to German: ", | |
"french": "translate English to French: " | |
} | |
# Generate translations for each language | |
translations = {} | |
# Buttons to trigger translation | |
translate_german = st.button("Translate to German") | |
translate_french = st.button("Translate to French") | |
for language, prefix in translation_prefixes.items(): | |
# Translate the entire text, not page by page | |
text_to_translate = prefix + text | |
input_ids = tokenizer(text_to_translate, return_tensors="pt").input_ids | |
outputs = model.generate(input_ids=input_ids, max_length=150, num_beams=4, no_repeat_ngram_size=2) | |
translated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
translations[language] = translated_text | |
# Display the translations based on the button clicked | |
if translate_german: | |
display_translation(translations["german"], "German") | |
if translate_french: | |
display_translation(translations["french"], "French") | |
def display_translation(translation, language): | |
st.write(f"\nLanguage: {language}") | |
st.write(f"Translation: {translation}") | |
if __name__ == "__main__": | |
main() | |