Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from torchvision import datasets, transforms | |
from model import create_ViT | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
# Setup class names | |
with open("class_names.txt", "r") as f: | |
class_names = [food_name.strip() for food_name in f.readlines()] | |
# Create model | |
model = create_ViT() | |
# Load saved weights | |
model.load_state_dict( | |
torch.load( | |
f="ViT.pth", | |
map_location=torch.device("cpu"), | |
) | |
) | |
def predict(img) -> Tuple[Dict, float]: | |
start_time = timer() | |
preprocess = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
]) | |
image = preprocess(img).unsqueeze(0) # Add batch dimension | |
# Make predictions | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(image).logits | |
predicted_probs = torch.softmax(outputs, dim=1) | |
# Create a prediction label and prediction probability dictionary for each prediction class | |
pred_labels_and_probs = {class_names[i]: float(predicted_probs[0][i]) for i in range(len(class_names))} | |
# Calculate the prediction time | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
##GRADIO APP | |
# Create title, description and article strings | |
title = "FoodVision🍔🍟🍦" | |
description = "A Vision Transformer feature extractor computer vision model to classify images of food into 121 different classes." | |
article = "Created by [Rohit](https://github.com/ItsNotRohit02)." | |
# Create examples list from "examples/" directory | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create Gradio interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Label(num_top_classes=5, label="Predictions"), | |
gr.Number(label="Prediction time (s)"), | |
], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article, | |
) | |
# Launch the app! | |
demo.launch() | |