FoodVision / app.py
ItsNotRohit's picture
Update app.py
82d6ea6
import gradio as gr
import os
import torch
from torchvision import datasets, transforms
from model import create_ViT
from timeit import default_timer as timer
from typing import Tuple, Dict
# Setup class names
with open("class_names.txt", "r") as f:
class_names = [food_name.strip() for food_name in f.readlines()]
# Create model
model = create_ViT()
# Load saved weights
model.load_state_dict(
torch.load(
f="ViT.pth",
map_location=torch.device("cpu"),
)
)
def predict(img) -> Tuple[Dict, float]:
start_time = timer()
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
image = preprocess(img).unsqueeze(0) # Add batch dimension
# Make predictions
model.eval()
with torch.no_grad():
outputs = model(image).logits
predicted_probs = torch.softmax(outputs, dim=1)
# Create a prediction label and prediction probability dictionary for each prediction class
pred_labels_and_probs = {class_names[i]: float(predicted_probs[0][i]) for i in range(len(class_names))}
# Calculate the prediction time
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
##GRADIO APP
# Create title, description and article strings
title = "FoodVision🍔🍟🍦"
description = "A Vision Transformer feature extractor computer vision model to classify images of food into 121 different classes."
article = "Created by [Rohit](https://github.com/ItsNotRohit02)."
# Create examples list from "examples/" directory
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create Gradio interface
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil"),
outputs=[
gr.Label(num_top_classes=5, label="Predictions"),
gr.Number(label="Prediction time (s)"),
],
examples=example_list,
title=title,
description=description,
article=article,
)
# Launch the app!
demo.launch()