ItsNotRohit commited on
Commit
da26c6d
·
1 Parent(s): a164a21

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +76 -0
  2. class_names.txt +101 -0
  3. model.py +23 -0
  4. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import os
3
+ import torch
4
+
5
+ from model import create_effnetv2
6
+ from timeit import default_timer as timer
7
+ from typing import Tuple, Dict
8
+
9
+ # Setup class names
10
+ with open("class_names.txt", "r") as f:
11
+ class_names = [food_name.strip() for food_name in f.readlines()]
12
+
13
+
14
+ # Create model
15
+ effnetv2, effnetv2_transforms = create_effnetv2(
16
+ num_classes=101,
17
+ )
18
+
19
+ # Load saved weights
20
+ effnetv2.load_state_dict(
21
+ torch.load(
22
+ f="effnet_v2.pth",
23
+ map_location=torch.device("cpu"),
24
+ )
25
+ )
26
+
27
+
28
+ # Create predict function
29
+ def predict(img) -> Tuple[Dict, float]:
30
+
31
+ start_time = timer()
32
+
33
+ # Transform the target image and add a batch dimension
34
+ img = effnetv2_transforms(img).unsqueeze(0)
35
+
36
+ # Put model into evaluation mode and turn on inference mode
37
+ effnetv2.eval()
38
+ with torch.inference_mode():
39
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
40
+ pred_probs = torch.softmax(effnetv2(img), dim=1)
41
+
42
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
43
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
44
+
45
+ # Calculate the prediction time
46
+ pred_time = round(timer() - start_time, 5)
47
+
48
+ # Return the prediction dictionary and prediction time
49
+ return pred_labels_and_probs, pred_time
50
+
51
+
52
+ ##GRADIO APP
53
+ # Create title, description and article strings
54
+ title = "FoodVision"
55
+ description = "An EfficientNetV2 feature extractor computer vision model to classify images of food into 101 different classes."
56
+ article = "Created by [Rohit](https://github.com/ItsNotRohit02)."
57
+
58
+ # Create examples list from "examples/" directory
59
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
60
+
61
+ # Create Gradio interface
62
+ demo = gr.Interface(
63
+ fn=predict,
64
+ inputs=gr.Image(type="pil"),
65
+ outputs=[
66
+ gr.Label(num_top_classes=5, label="Predictions"),
67
+ gr.Number(label="Prediction time (s)"),
68
+ ],
69
+ examples=example_list,
70
+ title=title,
71
+ description=description,
72
+ article=article,
73
+ )
74
+
75
+ # Launch the app!
76
+ demo.launch()
class_names.txt ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ apple_pie
2
+ baby_back_ribs
3
+ baklava
4
+ beef_carpaccio
5
+ beef_tartare
6
+ beet_salad
7
+ beignets
8
+ bibimbap
9
+ bread_pudding
10
+ breakfast_burrito
11
+ bruschetta
12
+ caesar_salad
13
+ cannoli
14
+ caprese_salad
15
+ carrot_cake
16
+ ceviche
17
+ cheese_plate
18
+ cheesecake
19
+ chicken_curry
20
+ chicken_quesadilla
21
+ chicken_wings
22
+ chocolate_cake
23
+ chocolate_mousse
24
+ churros
25
+ clam_chowder
26
+ club_sandwich
27
+ crab_cakes
28
+ creme_brulee
29
+ croque_madame
30
+ cup_cakes
31
+ deviled_eggs
32
+ donuts
33
+ dumplings
34
+ edamame
35
+ eggs_benedict
36
+ escargots
37
+ falafel
38
+ filet_mignon
39
+ fish_and_chips
40
+ foie_gras
41
+ french_fries
42
+ french_onion_soup
43
+ french_toast
44
+ fried_calamari
45
+ fried_rice
46
+ frozen_yogurt
47
+ garlic_bread
48
+ gnocchi
49
+ greek_salad
50
+ grilled_cheese_sandwich
51
+ grilled_salmon
52
+ guacamole
53
+ gyoza
54
+ hamburger
55
+ hot_and_sour_soup
56
+ hot_dog
57
+ huevos_rancheros
58
+ hummus
59
+ ice_cream
60
+ lasagna
61
+ lobster_bisque
62
+ lobster_roll_sandwich
63
+ macaroni_and_cheese
64
+ macarons
65
+ miso_soup
66
+ mussels
67
+ nachos
68
+ omelette
69
+ onion_rings
70
+ oysters
71
+ pad_thai
72
+ paella
73
+ pancakes
74
+ panna_cotta
75
+ peking_duck
76
+ pho
77
+ pizza
78
+ pork_chop
79
+ poutine
80
+ prime_rib
81
+ pulled_pork_sandwich
82
+ ramen
83
+ ravioli
84
+ red_velvet_cake
85
+ risotto
86
+ samosa
87
+ sashimi
88
+ scallops
89
+ seaweed_salad
90
+ shrimp_and_grits
91
+ spaghetti_bolognese
92
+ spaghetti_carbonara
93
+ spring_rolls
94
+ steak
95
+ strawberry_shortcake
96
+ sushi
97
+ tacos
98
+ takoyaki
99
+ tiramisu
100
+ tuna_tartare
101
+ waffles
model.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetv2(num_classes:int=101,
8
+ seed:int=42):
9
+
10
+ weights = torchvision.models.EfficientNet_V2_M_Weights.DEFAULT
11
+ transforms = weights.transforms()
12
+ model = torchvision.models.efficientnet_v2_m(weights=weights)
13
+
14
+ for param in model.parameters():
15
+ param.requires_grad = False
16
+
17
+ torch.manual_seed(seed)
18
+ model.classifier = nn.Sequential(
19
+ nn.Dropout(p=0.3, inplace=True),
20
+ nn.Linear(in_features=1280, out_features=num_classes),
21
+ )
22
+
23
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==2.0.1
2
+ torchvision==0.15.2
3
+ gradio==3.47.1