Spaces:
Runtime error
Runtime error
Add application file
Browse files- app.py +66 -4
- dogs_vs_cats_test.py +0 -78
app.py
CHANGED
@@ -1,7 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
iface.launch()
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# # Dog v Cat
|
5 |
+
|
6 |
+
# In[5]:
|
7 |
+
|
8 |
+
|
9 |
+
#/export
|
10 |
+
from fastai.vision.all import *
|
11 |
import gradio as gr
|
12 |
|
13 |
+
def is_cat(x): return x[0].isupper()
|
14 |
+
|
15 |
+
|
16 |
+
# In[6]:
|
17 |
+
|
18 |
+
|
19 |
+
im = PILImage.create('dog1.jpg')
|
20 |
+
im.thumbnail((192, 192))
|
21 |
+
im
|
22 |
+
|
23 |
+
|
24 |
+
# In[8]:
|
25 |
+
|
26 |
+
|
27 |
+
#/export
|
28 |
+
import pathlib
|
29 |
+
temp = pathlib.PosixPath
|
30 |
+
pathlib.PosixPath = pathlib.WindowsPath
|
31 |
+
|
32 |
+
learn = load_learner('model.pkl')
|
33 |
+
|
34 |
+
|
35 |
+
# In[11]:
|
36 |
+
|
37 |
+
|
38 |
+
learn.predict(im)
|
39 |
+
|
40 |
+
|
41 |
+
# In[12]:
|
42 |
+
|
43 |
+
|
44 |
+
#/export
|
45 |
+
categories = ('Dog', 'Cat')
|
46 |
+
|
47 |
+
def classify_images(img):
|
48 |
+
pred,idx,probs = learn.predict(img)
|
49 |
+
return dict(zip(categories, map(float, probs)))
|
50 |
+
|
51 |
+
|
52 |
+
# In[13]:
|
53 |
+
|
54 |
+
|
55 |
+
classify_images(im)
|
56 |
+
|
57 |
+
|
58 |
+
# In[14]:
|
59 |
+
|
60 |
+
|
61 |
+
#/export
|
62 |
+
image = gr.inputs.Image(shape = (192,192))
|
63 |
+
label = gr.outputs.Label()
|
64 |
+
examples = ['dog1.jpg', 'cat1.jpg']
|
65 |
+
|
66 |
+
intf = gr.Interface(fn = classify_images, inputs = image, outputs = label, examples = examples)
|
67 |
+
intf.launch(inline = False)
|
68 |
+
|
69 |
|
|
|
|
dogs_vs_cats_test.py
DELETED
@@ -1,78 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
# coding: utf-8
|
3 |
-
|
4 |
-
# # Dog v Cat
|
5 |
-
|
6 |
-
# In[5]:
|
7 |
-
|
8 |
-
|
9 |
-
#/export
|
10 |
-
from fastai.vision.all import *
|
11 |
-
import gradio as gr
|
12 |
-
|
13 |
-
def is_cat(x): return x[0].isupper()
|
14 |
-
|
15 |
-
|
16 |
-
# In[6]:
|
17 |
-
|
18 |
-
|
19 |
-
im = PILImage.create('dog1.jpg')
|
20 |
-
im.thumbnail((192, 192))
|
21 |
-
im
|
22 |
-
|
23 |
-
|
24 |
-
# In[8]:
|
25 |
-
|
26 |
-
|
27 |
-
#/export
|
28 |
-
import pathlib
|
29 |
-
temp = pathlib.PosixPath
|
30 |
-
pathlib.PosixPath = pathlib.WindowsPath
|
31 |
-
|
32 |
-
learn = load_learner('model.pkl')
|
33 |
-
|
34 |
-
|
35 |
-
# In[11]:
|
36 |
-
|
37 |
-
|
38 |
-
learn.predict(im)
|
39 |
-
|
40 |
-
|
41 |
-
# In[12]:
|
42 |
-
|
43 |
-
|
44 |
-
#/export
|
45 |
-
categories = ('Dog', 'Cat')
|
46 |
-
|
47 |
-
def classify_images(img):
|
48 |
-
pred,idx,probs = learn.predict(img)
|
49 |
-
return dict(zip(categories, map(float, probs)))
|
50 |
-
|
51 |
-
|
52 |
-
# In[13]:
|
53 |
-
|
54 |
-
|
55 |
-
classify_images(im)
|
56 |
-
|
57 |
-
|
58 |
-
# In[14]:
|
59 |
-
|
60 |
-
|
61 |
-
#/export
|
62 |
-
image = gr.inputs.Image(shape = (192,192))
|
63 |
-
label = gr.outputs.Label()
|
64 |
-
examples = ['dog1.jpg', 'cat1.jpg']
|
65 |
-
|
66 |
-
intf = gr.Interface(fn = classify_images, inputs = image, outputs = label, examples = examples)
|
67 |
-
intf.launch(inline = False)
|
68 |
-
|
69 |
-
|
70 |
-
# ## export -
|
71 |
-
|
72 |
-
# In[28]:
|
73 |
-
|
74 |
-
|
75 |
-
import nbdev
|
76 |
-
nbdev.export.nb_export('dogs_vs_cats_test.ipynb', 'app')
|
77 |
-
print('Export successful')
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|