Update pages/GPT.py
Browse files- pages/GPT.py +6 -0
pages/GPT.py
CHANGED
@@ -5,6 +5,7 @@ import transformers
|
|
5 |
import random
|
6 |
import textwrap
|
7 |
|
|
|
8 |
def load_model():
|
9 |
model_finetuned = transformers.AutoModelWithLMHead.from_pretrained(
|
10 |
'tinkoff-ai/ruDialoGPT-small',
|
@@ -17,6 +18,7 @@ def load_model():
|
|
17 |
|
18 |
def preprocess_text(text_input, tokenizer):
|
19 |
prompt = tokenizer.encode(text_input, return_tensors='pt')
|
|
|
20 |
|
21 |
def predict_sentiment(model, prompt, temp, num_generate):
|
22 |
with torch.inference_mode():
|
@@ -31,6 +33,7 @@ def predict_sentiment(model, prompt, temp, num_generate):
|
|
31 |
no_repeat_ngram_size=3,
|
32 |
num_return_sequences=num_generate,
|
33 |
).cpu().numpy()
|
|
|
34 |
return result
|
35 |
|
36 |
st.title('Text generation with dreambook')
|
@@ -38,8 +41,11 @@ st.title('Text generation with dreambook')
|
|
38 |
model, tokenizer = load_model()
|
39 |
|
40 |
text_input = st.text_input("Enter some text about movie")
|
|
|
41 |
max_len = st.slider('Length of sequence', 0, 500, 250)
|
|
|
42 |
temp = st.slider('Temperature', 1, 30, 1)
|
|
|
43 |
if st.button('Generate a random number of sequences'):
|
44 |
num_generate = random.randint(1,5)
|
45 |
st.write(f'Number of sequences: {num_generate}')
|
|
|
5 |
import random
|
6 |
import textwrap
|
7 |
|
8 |
+
@st.cache
|
9 |
def load_model():
|
10 |
model_finetuned = transformers.AutoModelWithLMHead.from_pretrained(
|
11 |
'tinkoff-ai/ruDialoGPT-small',
|
|
|
18 |
|
19 |
def preprocess_text(text_input, tokenizer):
|
20 |
prompt = tokenizer.encode(text_input, return_tensors='pt')
|
21 |
+
return prompt
|
22 |
|
23 |
def predict_sentiment(model, prompt, temp, num_generate):
|
24 |
with torch.inference_mode():
|
|
|
33 |
no_repeat_ngram_size=3,
|
34 |
num_return_sequences=num_generate,
|
35 |
).cpu().numpy()
|
36 |
+
print(result)
|
37 |
return result
|
38 |
|
39 |
st.title('Text generation with dreambook')
|
|
|
41 |
model, tokenizer = load_model()
|
42 |
|
43 |
text_input = st.text_input("Enter some text about movie")
|
44 |
+
print(text_input)
|
45 |
max_len = st.slider('Length of sequence', 0, 500, 250)
|
46 |
+
print(max_len)
|
47 |
temp = st.slider('Temperature', 1, 30, 1)
|
48 |
+
print(temp)
|
49 |
if st.button('Generate a random number of sequences'):
|
50 |
num_generate = random.randint(1,5)
|
51 |
st.write(f'Number of sequences: {num_generate}')
|