AIchat-2 / app.py
Ivan000's picture
Update app.py
15051ef verified
raw
history blame
3.77 kB
# app.py
# =======
# Полная версия исправленного кода приложения для генерации текста с использованием Gradio 4.44.1
# и модели Qwen/Qwen2.5-Coder-0.5B-Instruct.
# Imports
# =======
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Constants
# =========
MODEL_NAME = "Qwen/Qwen2.5-Coder-0.5B-Instruct"
SYSTEM_MESSAGE = "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."
# Load Model and Tokenizer
# ========================
def load_model_and_tokenizer():
"""
Load the model and tokenizer from Hugging Face.
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
device_map=device
)
return model, tokenizer
# Ensure the model and tokenizer are loaded
model, tokenizer = load_model_and_tokenizer()
# Generate Response
# =================
def generate_response(prompt, chat_history, max_new_tokens, temperature):
"""
Generate a response from the model based on the user prompt and chat history.
"""
messages = [{"role": "system", "content": SYSTEM_MESSAGE}] + chat_history + [{"role": "user", "content": prompt}]
# Concatenate messages into a single string for the model
text = "\n".join(f"{msg['role']}: {msg['content']}" for msg in messages)
model_inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024).to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=max_new_tokens,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=temperature
)
response = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response
# Clear Chat History
# ==================
def clear_chat():
"""
Clear the chat history.
"""
return [], ""
# Gradio Interface
# =================
def gradio_interface():
"""
Create and launch the Gradio interface.
"""
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(label="Chat with Qwen/Qwen2.5-Coder-0.5B-Instruct", type="messages")
msg = gr.Textbox(label="User Input")
with gr.Row():
submit = gr.Button("Submit")
clear = gr.Button("Clear Chat")
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Settings")
max_new_tokens = gr.Slider(50, 1024, value=512, step=1, label="Max New Tokens")
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.05, label="Temperature")
def respond(message, chat_history, max_new_tokens, temperature):
if not message.strip():
return chat_history, ""
chat_history.append({"role": "user", "content": message})
response = generate_response(message, chat_history, max_new_tokens, temperature)
chat_history.append({"role": "assistant", "content": response})
return chat_history, ""
submit.click(respond, [msg, chatbot, max_new_tokens, temperature], [chatbot, msg])
msg.submit(respond, [msg, chatbot, max_new_tokens, temperature], [chatbot, msg])
clear.click(clear_chat, None, [chatbot, msg])
demo.launch()
# Main
# ====
if __name__ == "__main__":
gradio_interface()
# Dependencies
# =============
# pip install transformers gradio==4.44.1 torch accelerate