|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
|
|
|
|
MODEL_NAME = "Qwen/Qwen2.5-Coder-0.5B-Instruct" |
|
SYSTEM_MESSAGE = "You are Qwen, created by Alibaba Cloud. You are a helpful assistant." |
|
|
|
|
|
|
|
def load_model_and_tokenizer(): |
|
""" |
|
Load the model and tokenizer from Hugging Face. |
|
""" |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
torch_dtype=torch.float16 if device == "cuda" else torch.float32, |
|
device_map=device |
|
) |
|
return model, tokenizer |
|
|
|
|
|
model, tokenizer = load_model_and_tokenizer() |
|
|
|
|
|
|
|
def generate_response(prompt, chat_history, max_new_tokens, temperature): |
|
""" |
|
Generate a response from the model based on the user prompt and chat history. |
|
""" |
|
messages = [{"role": "system", "content": SYSTEM_MESSAGE}] + chat_history + [{"role": "user", "content": prompt}] |
|
|
|
text = "\n".join(f"{msg['role']}: {msg['content']}" for msg in messages) |
|
model_inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024).to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=max_new_tokens, |
|
do_sample=True, |
|
top_k=50, |
|
top_p=0.95, |
|
temperature=temperature |
|
) |
|
|
|
response = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=True) |
|
return response |
|
|
|
|
|
|
|
def clear_chat(): |
|
""" |
|
Clear the chat history. |
|
""" |
|
return [], "" |
|
|
|
|
|
|
|
def gradio_interface(): |
|
""" |
|
Create and launch the Gradio interface. |
|
""" |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot(label="Chat with Qwen/Qwen2.5-Coder-0.5B-Instruct", type="messages") |
|
msg = gr.Textbox(label="User Input") |
|
with gr.Row(): |
|
submit = gr.Button("Submit") |
|
clear = gr.Button("Clear Chat") |
|
with gr.Column(scale=1): |
|
with gr.Group(): |
|
gr.Markdown("### Settings") |
|
max_new_tokens = gr.Slider(50, 1024, value=512, step=1, label="Max New Tokens") |
|
temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.05, label="Temperature") |
|
|
|
def respond(message, chat_history, max_new_tokens, temperature): |
|
if not message.strip(): |
|
return chat_history, "" |
|
chat_history.append({"role": "user", "content": message}) |
|
response = generate_response(message, chat_history, max_new_tokens, temperature) |
|
chat_history.append({"role": "assistant", "content": response}) |
|
return chat_history, "" |
|
|
|
submit.click(respond, [msg, chatbot, max_new_tokens, temperature], [chatbot, msg]) |
|
msg.submit(respond, [msg, chatbot, max_new_tokens, temperature], [chatbot, msg]) |
|
clear.click(clear_chat, None, [chatbot, msg]) |
|
|
|
demo.launch() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
gradio_interface() |
|
|
|
|
|
|
|
|
|
|