AIchat-2 / app.py
Ivan000's picture
Update app.py
a1689f4 verified
raw
history blame
1.84 kB
# app.py
# =============
# This is a complete app.py file for a Gradio app using the meta-llama/Llama-3.2-3B-Instruct model.
# The app allows users to input a message and receive a response from the model.
# Dependencies
# =============
# The following dependencies are required to run this app:
# - transformers
# - gradio
# - torch
#
# You can install these dependencies using pip:
# pip install transformers gradio torch
import torch
from transformers import pipeline
import gradio as gr # Import gradio
# Load the model and tokenizer
model_id = "meta-llama/Llama-3.2-3B-Instruct"
device = "cpu" # Use CPU for inference
# Initialize the pipeline
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
def generate_response(prompt):
"""
Generate a response from the model based on the given prompt.
Args:
prompt (str): The input message from the user.
Returns:
str: The generated response from the model.
"""
messages = [
{"role": "system", "content": "You are a helpful assistant!"},
{"role": "user", "content": prompt},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
return outputs[0]["generated_text"][-1]
# Define the Gradio interface
def gradio_interface():
"""
Define the Gradio interface for the app.
"""
iface = gr.Interface(
fn=generate_response,
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter your message here..."),
outputs="text",
title="Llama-3.2-3B-Instruct Chatbot",
description="Chat with the Llama-3.2-3B-Instruct model. Enter your message and get a response!",
)
return iface
# Launch the Gradio app
if __name__ == "__main__":
iface = gradio_interface()
iface.launch()