# app.py # ============= # This is a complete app.py file for a text generation app using the Qwen/Qwen2.5-Coder-0.5B-Instruct model. # The app uses the Gradio library to create a web interface for interacting with the model. # Imports # ======= import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Constants # ========= MODEL_NAME = "Qwen/Qwen2.5-Coder-0.5B-Instruct" SYSTEM_MESSAGE = "You are Qwen, created by Alibaba Cloud. You are a helpful assistant." # Load Model and Tokenizer # ======================== def load_model_and_tokenizer(): """ Load the model and tokenizer from Hugging Face. """ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype="auto", device_map="cpu" # Ensure the model runs on the CPU ) return model, tokenizer # Ensure the model and tokenizer are loaded model, tokenizer = load_model_and_tokenizer() # Generate Response # ================= def generate_response(prompt, chat_history, max_new_tokens, temperature): """ Generate a response from the model based on the user prompt and chat history. """ messages = [{"role": "system", "content": SYSTEM_MESSAGE}] + chat_history + [{"role": "user", "content": prompt}] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=max_new_tokens, do_sample=True, top_k=50, top_p=0.95, temperature=temperature, output_scores=True, return_dict_in_generate=True, return_legacy_cache=True # Ensure legacy format is returned ) response = "" for token_id in generated_ids.sequences[0][len(model_inputs.input_ids[0]):]: response += tokenizer.decode([token_id], skip_special_tokens=True) yield chat_history + [{"role": "assistant", "content": response}] # Clear Chat History # ================== def clear_chat(): """ Clear the chat history. """ return [], "" # Gradio Interface # ================= def gradio_interface(): """ Create and launch the Gradio interface. """ with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=3): chatbot = gr.Chatbot(label="Chat with Qwen/Qwen2.5-Coder-0.5B-Instruct", type="messages") msg = gr.Textbox(label="User Input") with gr.Row(): submit = gr.Button("Submit") clear = gr.Button("Clear Chat") with gr.Column(scale=1): with gr.Group(): gr.Markdown("### Settings") max_new_tokens = gr.Slider(50, 1024, value=512, step=1, label="Max New Tokens") temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.05, label="Temperature") def respond(message, chat_history, max_new_tokens, temperature): chat_history.append({"role": "user", "content": message}) response = "" for chunk in generate_response(message, chat_history, max_new_tokens, temperature): response = chunk[-1]["content"] yield chat_history, "" chat_history.append({"role": "assistant", "content": response}) yield chat_history, "" submit.click(respond, [msg, chatbot, max_new_tokens, temperature], [chatbot, msg]) msg.submit(respond, [msg, chatbot, max_new_tokens, temperature], [chatbot, msg]) clear.click(clear_chat, None, [chatbot, msg]) demo.launch() # Main # ==== if __name__ == "__main__": gradio_interface() # Dependencies # ============= # The following dependencies are required to run this app: # - transformers # - gradio # - torch # - accelerate # # You can install these dependencies using pip: # pip install transformers gradio torch accelerate