Update app.py
Browse files
app.py
CHANGED
@@ -1,69 +1,104 @@
|
|
1 |
# app.py
|
2 |
# =============
|
3 |
-
# This is a complete app.py file for a
|
4 |
-
# The app
|
5 |
|
6 |
-
#
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
# - gradio
|
11 |
-
# - torch
|
12 |
-
#
|
13 |
-
# You can install these dependencies using pip:
|
14 |
-
# pip install transformers gradio torch
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
# Load
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
pipe = pipeline(
|
26 |
-
"text-generation",
|
27 |
-
model=model_id,
|
28 |
-
torch_dtype=torch.bfloat16,
|
29 |
-
device_map="auto",
|
30 |
-
)
|
31 |
|
32 |
-
|
|
|
|
|
33 |
"""
|
34 |
-
Generate a response from the model based on the
|
35 |
-
|
36 |
-
Args:
|
37 |
-
prompt (str): The input message from the user.
|
38 |
-
|
39 |
-
Returns:
|
40 |
-
str: The generated response from the model.
|
41 |
"""
|
42 |
-
messages = [
|
43 |
-
|
44 |
-
{"role": "user", "content": prompt},
|
45 |
-
]
|
46 |
-
outputs = pipe(
|
47 |
messages,
|
48 |
-
|
|
|
49 |
)
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
#
|
|
|
53 |
def gradio_interface():
|
54 |
"""
|
55 |
-
|
56 |
"""
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
if __name__ == "__main__":
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
# =============
|
3 |
+
# This is a complete app.py file for a text generation app using the Qwen/Qwen2.5-Coder-0.5B-Instruct model.
|
4 |
+
# The app uses the Gradio library to create a web interface for interacting with the model.
|
5 |
|
6 |
+
# Imports
|
7 |
+
# =======
|
8 |
+
import gradio as gr
|
9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Constants
|
12 |
+
# =========
|
13 |
+
MODEL_NAME = "Qwen/Qwen2.5-Coder-0.5B-Instruct"
|
14 |
+
SYSTEM_MESSAGE = "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."
|
15 |
|
16 |
+
# Load Model and Tokenizer
|
17 |
+
# ========================
|
18 |
+
def load_model_and_tokenizer():
|
19 |
+
"""
|
20 |
+
Load the model and tokenizer from Hugging Face.
|
21 |
+
"""
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
MODEL_NAME,
|
25 |
+
torch_dtype="auto",
|
26 |
+
device_map="cpu" # Ensure the model runs on the CPU
|
27 |
+
)
|
28 |
+
return model, tokenizer
|
29 |
|
30 |
+
model, tokenizer = load_model_and_tokenizer()
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Generate Response
|
33 |
+
# =================
|
34 |
+
def generate_response(prompt, chat_history):
|
35 |
"""
|
36 |
+
Generate a response from the model based on the user prompt and chat history.
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
"""
|
38 |
+
messages = [{"role": "system", "content": SYSTEM_MESSAGE}] + chat_history + [{"role": "user", "content": prompt}]
|
39 |
+
text = tokenizer.apply_chat_template(
|
|
|
|
|
|
|
40 |
messages,
|
41 |
+
tokenize=False,
|
42 |
+
add_generation_prompt=True
|
43 |
)
|
44 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
45 |
+
|
46 |
+
generated_ids = model.generate(
|
47 |
+
**model_inputs,
|
48 |
+
max_new_tokens=512,
|
49 |
+
do_sample=True,
|
50 |
+
top_k=50,
|
51 |
+
top_p=0.95,
|
52 |
+
temperature=0.7,
|
53 |
+
stream=True
|
54 |
+
)
|
55 |
+
|
56 |
+
response = ""
|
57 |
+
for new_token in generated_ids[0][len(model_inputs.input_ids[0]):]:
|
58 |
+
response += tokenizer.decode([new_token], skip_special_tokens=True)
|
59 |
+
yield response
|
60 |
+
|
61 |
+
# Clear Chat History
|
62 |
+
# ==================
|
63 |
+
def clear_chat():
|
64 |
+
"""
|
65 |
+
Clear the chat history.
|
66 |
+
"""
|
67 |
+
return [], []
|
68 |
|
69 |
+
# Gradio Interface
|
70 |
+
# =================
|
71 |
def gradio_interface():
|
72 |
"""
|
73 |
+
Create and launch the Gradio interface.
|
74 |
"""
|
75 |
+
with gr.Blocks() as demo:
|
76 |
+
chatbot = gr.Chatbot(label="Chat with Qwen/Qwen2.5-Coder-0.5B-Instruct")
|
77 |
+
msg = gr.Textbox(label="User Input")
|
78 |
+
clear = gr.Button("Clear Chat")
|
79 |
+
|
80 |
+
def respond(message, chat_history):
|
81 |
+
chat_history.append({"role": "user", "content": message})
|
82 |
+
response = generate_response(message, chat_history)
|
83 |
+
chat_history.append({"role": "assistant", "content": response})
|
84 |
+
return chat_history, chat_history
|
85 |
|
86 |
+
msg.submit(respond, [msg, chatbot], [chatbot, chatbot])
|
87 |
+
clear.click(clear_chat, None, [chatbot, chatbot])
|
88 |
+
|
89 |
+
demo.launch()
|
90 |
+
|
91 |
+
# Main
|
92 |
+
# ====
|
93 |
if __name__ == "__main__":
|
94 |
+
gradio_interface()
|
95 |
+
|
96 |
+
# Dependencies
|
97 |
+
# =============
|
98 |
+
# The following dependencies are required to run this app:
|
99 |
+
# - transformers
|
100 |
+
# - gradio
|
101 |
+
# - torch
|
102 |
+
#
|
103 |
+
# You can install these dependencies using pip:
|
104 |
+
# pip install transformers gradio torch
|