Cotype-Nano / app.py
Ivan000's picture
Update app.py
87947e6 verified
raw
history blame
1.54 kB
# app.py
# =============
# This is a complete app.py file for deploying the MTSAIR/Cotype-Nano model using Gradio and Hugging Face Transformers with chat and token streaming functionality.
import gradio as gr
from transformers import pipeline
# Load the model and pipeline
model_name = "MTSAIR/Cotype-Nano"
pipe = pipeline("text-generation", model=model_name, device="cpu")
# Define the system prompt
system_prompt = {"role": "system", "content": "Ты — ИИ-помощник. Тебе дано задание: необходимо сгенерировать подробный и развернутый ответ."}
# Define the Gradio interface
def generate_response(history, user_input):
messages = [system_prompt] + history + [{"role": "user", "content": user_input}]
response = pipe(messages, max_length=1024, return_full_text=False)
generated_text = response[0]['generated_text']
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": generated_text})
return history, ""
# Create the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("## Cotype-Nano Text Generation Chat")
chatbot = gr.Chatbot([], elem_id="chatbot")
with gr.Row():
txt = gr.Textbox(
show_label=False,
placeholder="Введите ваш запрос здесь...",
).style(container=False)
txt.submit(generate_response, [chatbot, txt], [chatbot, txt])
# Launch the interface
if __name__ == "__main__":
demo.launch()