File size: 7,384 Bytes
414714e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# This is the script that will be used in the training container
import argparse
import logging
import os
import sys

import numpy as np
import nltk

try:
    nltk.data.find("tokenizers/punkt")
except LookupError as e:
    print(e)
    try:
        nltk.download("punkt")
    except FileExistsError as e:
        print(e)
        pass

from nltk import sent_tokenize

from datasets import load_metric, load_from_disk
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
logger.addHandler(logging.StreamHandler(sys.stdout))


def tokenize(batch, text_column, target_column, max_source, max_target):
    tokenized_input = tokenizer(
        batch[text_column], padding="max_length", truncation=True, max_length=max_source
    )
    tokenized_target = tokenizer(
        batch[target_column],
        padding="max_length",
        truncation=True,
        max_length=max_target,
    )

    tokenized_input["labels"] = tokenized_target["input_ids"]

    return tokenized_input


def load_and_tokenize_dataset(
    data_dir, split, text_column, target_column, max_source, max_target
):

    dataset = load_from_disk(os.path.join(data_dir, split))
    tokenized_dataset = dataset.map(
        lambda x: tokenize(x, text_column, target_column, max_source, max_target),
        batched=True,
        batch_size=512,
    )
    tokenized_dataset.set_format(
        "numpy", columns=["input_ids", "attention_mask", "labels"]
    )

    return tokenized_dataset

def compute_metrics(eval_pred):
    metric = load_metric('glue', 'mrpc')
    predictions, references = eval_pred
    return metric.compute(predictions=predictions, references=references)
    
#     metric = load_metric("rouge")
#     predictions, labels = eval_pred
#     decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
    
#     # Replace -100 in the labels as we can't decode them.
#     labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
#     decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
    
#     # Rouge expects a newline after each sentence
#     decoded_preds = ["\n".join(nltk.sent_tokenize(pred.strip()))
#                       for pred in decoded_preds]
#     decoded_labels = ["\n".join(nltk.sent_tokenize(label.strip())) 
#                       for label in decoded_labels]
    
#     # Compute ROUGE scores
#     logger.info("Decoded preds: %s" % decoded_preds)
#     logger.info("Decoded labels: %s" % decoded_labels)
#     result = metric.compute(predictions=decoded_preds, references=decoded_labels,
#                             use_stemmer=True)

#     # Extract ROUGE f1 scores
#     result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
    
#     # Add mean generated length to metrics
#     prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id)
#                       for pred in predictions]
#     result["gen_len"] = np.mean(prediction_lens)
    
#     return {k: round(v, 4) for k, v in result.items()}

def train(args):
    from transformers import T5ForConditionalGeneration, T5Tokenizer
    
    logger.info("Loading tokenizer...\n")
    global tokenizer
    global model_name
    model_name = args.model_name
    
    logger.info("Loading pretrained model\n")
    if "google" in model_name:
        model = T5ForConditionalGeneration.from_pretrained(model_name)    
        tokenizer = T5Tokenizer.from_pretrained(model_name)
    else:
        model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
        tokenizer = AutoTokenizer.from_pretrained(model_name)
    logger.info("Pretrained model loaded\n")

    logger.info("Fetching and tokenizing data for training")
    train_dataset = load_and_tokenize_dataset(
        args.train_data_dir,
        "train",
        args.text_column,
        args.target_column,
        args.max_source,
        args.max_target,
    )

    logger.info("Tokenizing data for training loaded")

    eval_dataset = load_and_tokenize_dataset(
        args.train_data_dir,
        "validation",
        args.text_column,
        args.target_column,
        args.max_source,
        args.max_target,
    )
    test_dataset = load_and_tokenize_dataset(
        args.train_data_dir,
        "test",
        args.text_column,
        args.target_column,
        args.max_source,
        args.max_target,
    )

    logger.info("Defining training arguments\n")
    training_args = Seq2SeqTrainingArguments(
        output_dir=args.model_dir,
        num_train_epochs=args.epoch,
        per_device_train_batch_size=args.train_batch_size,
        per_device_eval_batch_size=args.eval_batch_size,
        learning_rate=args.lr,
        warmup_steps=args.warmup_steps,
        weight_decay=args.weight_decay,
        logging_dir=args.log_dir,
        logging_strategy=args.logging_strategy,
        load_best_model_at_end=True,
        adafactor=True,
        do_train=True,
        do_eval=True,
        do_predict=True,
        save_total_limit=3,
        evaluation_strategy="epoch",
        save_strategy="epoch",
        predict_with_generate=True,
        metric_for_best_model="eval_loss",
        seed=7,
    )

    logger.info("Defining seq2seq Trainer")
    trainer = Seq2SeqTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset,
        tokenizer=tokenizer#,compute_metrics=compute_metrics,
    )

    logger.info("Starting Training")
    trainer.train()
    logger.info("Model trained successfully")
    trainer.save_model()
    logger.info("Model saved successfully")

    # Evaluation
    logger.info("*** Evaluate on test set***")

    logger.info(trainer.predict(test_dataset))

    logger.info("Removing unused checkpoints to save space in container")
    os.system(f"rm -rf {args.model_dir}/checkpoint-*/")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model-name", type=str, default="google/pegasus-xsum")
    parser.add_argument(
        "--train-data-dir", type=str, default=os.environ["SM_CHANNEL_TRAIN"]
    )
    # parser.add_argument("--val-data-dir", type=str,
    #                   default=os.environ["SM_CHANNEL_VALIDATION"])
    # parser.add_argument("--test-data-dir", type=str,
    #                    default=os.environ["SM_CHANNEL_TEST"])
    parser.add_argument("--text-column", type=str, default="dialogue")
    parser.add_argument("--target-column", type=str, default="summary")
    parser.add_argument("--max-source", type=int, default=512)
    parser.add_argument("--max-target", type=int, default=80)
    parser.add_argument("--model-dir", type=str, default=os.environ["SM_MODEL_DIR"])
    parser.add_argument("--epoch", type=int, default=5)
    parser.add_argument("--train-batch-size", type=int, default=2)
    parser.add_argument("--eval-batch-size", type=int, default=2)
    parser.add_argument("--warmup-steps", type=float, default=500)
    parser.add_argument("--lr", type=float, default=2e-5)
    parser.add_argument("--weight-decay", type=float, default=0.0)
    parser.add_argument("--log-dir", type=str, default=os.environ["SM_OUTPUT_DIR"])
    parser.add_argument("--logging-strategy", type=str, default="epoch")
    train(parser.parse_args())