Izza-shahzad-13's picture
Update app.py
f6359f9 verified
import streamlit as st
import pandas as pd
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
from transformers import T5ForConditionalGeneration, T5Tokenizer
# Load the Sentence Transformer and T5 model
@st.cache(allow_output_mutation=True)
def load_models():
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
return embedding_model, qa_model, tokenizer
embedding_model, qa_model, tokenizer = load_models()
# Upload and load the CSV file
st.title("Economics & Population Advisor")
uploaded_file = st.file_uploader("Upload your CSV file with economic documents", type=["csv"])
if uploaded_file is not None:
# Load CSV with error handling
df = pd.read_csv(uploaded_file, on_bad_lines='skip', engine='python')
st.write("Dataset Preview:", df.head())
# Allow user to specify the column containing the text (economic documents)
text_column = st.text_input("Specify the column containing the document text:", value="Country Name")
if text_column not in df.columns:
st.error(f"The column '{text_column}' was not found in the dataset.")
else:
# Extract documents from the specified column
documents = df[text_column].tolist()
# Create embeddings for FAISS indexing
st.write("Indexing documents...")
embeddings = embedding_model.encode(documents, convert_to_numpy=True)
dimension = embeddings.shape[1]
# Create a FAISS index and add embeddings
index = faiss.IndexFlatL2(dimension)
index.add(np.array(embeddings, dtype=np.float32))
st.write("Indexing complete.")
# Function to generate summary using T5 model
def generate_summary(context):
inputs = tokenizer("summarize: " + context, return_tensors="pt", max_length=512, truncation=True)
outputs = qa_model.generate(inputs["input_ids"], max_length=150, min_length=50, length_penalty=2.0)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# RAG functionality: Ask a question, retrieve documents, and generate an answer
st.subheader("Ask a Question about Economic Data")
question = st.text_input("Enter your question:")
if st.button("Get Answer") and question:
# Embed the question
question_embedding = embedding_model.encode([question], convert_to_numpy=True)
# Search for the most relevant documents
D, I = index.search(np.array(question_embedding, dtype=np.float32), k=3)
retrieved_docs = [documents[i] for i in I[0]]
# Combine retrieved documents into context
context = " ".join(retrieved_docs[:5]) # Limit to 5 documents to avoid long input
if len(context) > 1000: # Truncate context if too long
context = context[:1000]
# Generate summary using the context
answer = generate_summary(context)
st.write("Answer:", answer)