Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import faiss
|
4 |
+
import numpy as np
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
7 |
+
|
8 |
+
# Load the Sentence Transformer and T5 model
|
9 |
+
@st.cache(allow_output_mutation=True)
|
10 |
+
def load_models():
|
11 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
12 |
+
qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small")
|
13 |
+
tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small")
|
14 |
+
return embedding_model, qa_model, tokenizer
|
15 |
+
|
16 |
+
embedding_model, qa_model, tokenizer = load_models()
|
17 |
+
|
18 |
+
# Upload and load the CSV file
|
19 |
+
st.title("Economics & Population Advisor")
|
20 |
+
uploaded_file = st.file_uploader("Upload your CSV file with economic documents", type=["csv"])
|
21 |
+
|
22 |
+
if uploaded_file is not None:
|
23 |
+
# Load CSV
|
24 |
+
df = pd.read_csv(uploaded_file, error_bad_lines=False, engine='python')
|
25 |
+
st.write("Dataset Preview:", df.head())
|
26 |
+
|
27 |
+
# Assume 'text' column contains the document text; replace with actual column name
|
28 |
+
documents = df['text'].tolist() if 'text' in df.columns else st.text_input("Specify the text column name:")
|
29 |
+
|
30 |
+
# Create embeddings for FAISS indexing
|
31 |
+
st.write("Indexing documents...")
|
32 |
+
embeddings = embedding_model.encode(documents)
|
33 |
+
dimension = embeddings.shape[1]
|
34 |
+
index = faiss.IndexFlatL2(dimension)
|
35 |
+
index.add(np.array(embeddings))
|
36 |
+
st.write("Indexing complete.")
|
37 |
+
|
38 |
+
# Function to generate response
|
39 |
+
def generate_summary(context):
|
40 |
+
inputs = tokenizer("summarize: " + context, return_tensors="pt", max_length=512, truncation=True)
|
41 |
+
outputs = qa_model.generate(inputs["input_ids"], max_length=150, min_length=50, length_penalty=2.0)
|
42 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
|
44 |
+
# RAG functionality: Ask a question, retrieve documents, and generate an answer
|
45 |
+
st.subheader("Ask a Question about Economic Data")
|
46 |
+
question = st.text_input("Enter your question:")
|
47 |
+
|
48 |
+
if st.button("Get Answer") and question:
|
49 |
+
question_embedding = embedding_model.encode([question])
|
50 |
+
D, I = index.search(np.array(question_embedding), k=3)
|
51 |
+
retrieved_docs = [documents[i] for i in I[0]]
|
52 |
+
context = " ".join(retrieved_docs)
|
53 |
+
answer = generate_summary(context)
|
54 |
+
|
55 |
+
st.write("Answer:", answer)
|