import streamlit as st import pandas as pd import faiss import numpy as np from sentence_transformers import SentenceTransformer from transformers import T5ForConditionalGeneration, T5Tokenizer # Load the Sentence Transformer and T5 model @st.cache(allow_output_mutation=True) def load_models(): embedding_model = SentenceTransformer('all-MiniLM-L6-v2') qa_model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-small") tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-small") return embedding_model, qa_model, tokenizer embedding_model, qa_model, tokenizer = load_models() # Upload and load the CSV file st.title("Economics & Population Advisor") uploaded_file = st.file_uploader("Upload your CSV file with economic documents", type=["csv"]) if uploaded_file is not None: # Load CSV df = pd.read_csv(uploaded_file, error_bad_lines=False, engine='python') st.write("Dataset Preview:", df.head()) # Assume 'text' column contains the document text; replace with actual column name documents = df['Country Name'].tolist() if 'text' in df.columns else st.text_input("Specify the text column name:") # Create embeddings for FAISS indexing st.write("Indexing documents...") embeddings = embedding_model.encode(documents) dimension = embeddings.shape[1] index = faiss.IndexFlatL2(dimension) index.add(np.array(embeddings)) st.write("Indexing complete.") # Function to generate response def generate_summary(context): inputs = tokenizer("summarize: " + context, return_tensors="pt", max_length=512, truncation=True) outputs = qa_model.generate(inputs["input_ids"], max_length=150, min_length=50, length_penalty=2.0) return tokenizer.decode(outputs[0], skip_special_tokens=True) # RAG functionality: Ask a question, retrieve documents, and generate an answer st.subheader("Ask a Question about Economic Data") question = st.text_input("Enter your question:") if st.button("Get Answer") and question: question_embedding = embedding_model.encode([question]) D, I = index.search(np.array(question_embedding), k=3) retrieved_docs = [documents[i] for i in I[0]] context = " ".join(retrieved_docs) answer = generate_summary(context) st.write("Answer:", answer)