Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
import os | |
# Retrieve the Hugging Face token from environment variable | |
HUGGINGFACE_TOKEN = os.getenv("HF_ACCESS_TOKEN") | |
# Check if the token is available | |
if not HUGGINGFACE_TOKEN: | |
st.error("Hugging Face token not found. Please set the HUGGINGFACE_TOKEN environment variable.") | |
st.stop() # Stop the app if the token is not found | |
# Function to load model and tokenizer (local or Hugging Face with token) | |
def load_model(model_path): | |
try: | |
# Load tokenizer and model with authentication token if required | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=HUGGINGFACE_TOKEN) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_auth_token=HUGGINGFACE_TOKEN) | |
return tokenizer, model | |
except Exception as e: | |
st.error(f"Error loading model: {e}") | |
return None, None | |
# Set device (use GPU if available) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# Path to your model (either a local path or a Hugging Face model name) | |
model_path = "Izza-shahzad-13/fine-tuned-flan-t5" # Use your Hugging Face model identifier | |
# Load tokenizer and model | |
tokenizer, model = load_model(model_path) | |
if model and tokenizer: | |
model.to(device) | |
else: | |
st.stop() # Stop the app if model or tokenizer failed to load | |
# Function to generate response from the model | |
def generate_response(input_text): | |
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device) | |
with torch.no_grad(): | |
output = model.generate( | |
inputs['input_ids'], | |
max_length=500, | |
num_beams=4, | |
top_p=0.9, | |
top_k=50, | |
temperature=0.7, | |
do_sample=True, | |
no_repeat_ngram_size=3, | |
early_stopping=True | |
) | |
response = tokenizer.decode(output[0], skip_special_tokens=True) | |
return response | |
# Streamlit app interface | |
st.title("FLAN-T5 Mental Health Counseling Assistant") | |
st.write("Type your thoughts or feelings, and let the model respond.") | |
# User input for interaction | |
user_input = st.text_area("How are you feeling today?", placeholder="Type here...") | |
# Generate and display model response when input is provided | |
if user_input.strip(): # Check if input is not empty | |
with st.spinner("Generating response..."): | |
response = generate_response(user_input) | |
st.write("Model Response:", response) | |
else: | |
st.info("Please enter your thoughts or feelings in the text area above.") |