Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -14,6 +14,7 @@ if not HUGGINGFACE_TOKEN:
|
|
14 |
# Function to load model and tokenizer (local or Hugging Face with token)
|
15 |
def load_model(model_path):
|
16 |
try:
|
|
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=HUGGINGFACE_TOKEN)
|
18 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_auth_token=HUGGINGFACE_TOKEN)
|
19 |
return tokenizer, model
|
@@ -22,15 +23,17 @@ def load_model(model_path):
|
|
22 |
return None, None
|
23 |
|
24 |
# Set device (use GPU if available)
|
25 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
26 |
|
27 |
# Path to your model (either a local path or a Hugging Face model name)
|
28 |
model_path = "Izza-shahzad-13/fine-tuned-flan-t5" # Use your Hugging Face model identifier
|
29 |
|
30 |
# Load tokenizer and model
|
31 |
tokenizer, model = load_model(model_path)
|
32 |
-
if model:
|
33 |
model.to(device)
|
|
|
|
|
34 |
|
35 |
# Function to generate response from the model
|
36 |
def generate_response(input_text):
|
@@ -55,9 +58,12 @@ st.title("FLAN-T5 Mental Health Counseling Assistant")
|
|
55 |
st.write("Type your thoughts or feelings, and let the model respond.")
|
56 |
|
57 |
# User input for interaction
|
58 |
-
user_input = st.
|
59 |
|
60 |
# Generate and display model response when input is provided
|
61 |
-
if user_input:
|
62 |
-
|
|
|
63 |
st.write("Model Response:", response)
|
|
|
|
|
|
14 |
# Function to load model and tokenizer (local or Hugging Face with token)
|
15 |
def load_model(model_path):
|
16 |
try:
|
17 |
+
# Load tokenizer and model with authentication token if required
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_auth_token=HUGGINGFACE_TOKEN)
|
19 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path, use_auth_token=HUGGINGFACE_TOKEN)
|
20 |
return tokenizer, model
|
|
|
23 |
return None, None
|
24 |
|
25 |
# Set device (use GPU if available)
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
|
28 |
# Path to your model (either a local path or a Hugging Face model name)
|
29 |
model_path = "Izza-shahzad-13/fine-tuned-flan-t5" # Use your Hugging Face model identifier
|
30 |
|
31 |
# Load tokenizer and model
|
32 |
tokenizer, model = load_model(model_path)
|
33 |
+
if model and tokenizer:
|
34 |
model.to(device)
|
35 |
+
else:
|
36 |
+
st.stop() # Stop the app if model or tokenizer failed to load
|
37 |
|
38 |
# Function to generate response from the model
|
39 |
def generate_response(input_text):
|
|
|
58 |
st.write("Type your thoughts or feelings, and let the model respond.")
|
59 |
|
60 |
# User input for interaction
|
61 |
+
user_input = st.text_area("How are you feeling today?", placeholder="Type here...")
|
62 |
|
63 |
# Generate and display model response when input is provided
|
64 |
+
if user_input.strip(): # Check if input is not empty
|
65 |
+
with st.spinner("Generating response..."):
|
66 |
+
response = generate_response(user_input)
|
67 |
st.write("Model Response:", response)
|
68 |
+
else:
|
69 |
+
st.info("Please enter your thoughts or feelings in the text area above.")
|