Izza-shahzad-13 commited on
Commit
f5af1e1
·
verified ·
1 Parent(s): 09d0af6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +54 -34
app.py CHANGED
@@ -1,64 +1,84 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
 
 
 
 
 
 
 
 
 
 
28
  response = ""
29
 
 
30
  for message in client.chat_completion(
31
- messages,
32
  max_tokens=max_tokens,
33
  stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
38
-
39
  response += token
40
  yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ from sentence_transformers import SentenceTransformer
4
+ import faiss
5
+ import numpy as np
6
+ import pdfplumber
7
 
8
+ # Initialize the InferenceClient
 
 
9
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
10
 
11
+ # Function to extract text from PDFs
12
+ def extract_text_from_pdf(pdf_path):
13
+ text = ""
14
+ with pdfplumber.open(pdf_path) as pdf:
15
+ for page in pdf.pages:
16
+ page_text = page.extract_text()
17
+ if page_text:
18
+ text += page_text
19
+ return text
20
 
21
+ # Load and preprocess book PDFs
22
+ pdf_files = ["Diagnostic and statistical manual of mental disorders _ DSM-5 ( PDFDrive.com ).pdf"]
23
+ all_texts = [extract_text_from_pdf(pdf) for pdf in pdf_files]
 
 
 
 
 
 
24
 
25
+ # Split text into chunks
26
+ def chunk_text(text, chunk_size=300):
27
+ sentences = text.split('. ')
28
+ chunks, current_chunk = [], ""
29
+ for sentence in sentences:
30
+ if len(current_chunk) + len(sentence) <= chunk_size:
31
+ current_chunk += sentence + ". "
32
+ else:
33
+ chunks.append(current_chunk.strip())
34
+ current_chunk = sentence + ". "
35
+ if current_chunk:
36
+ chunks.append(current_chunk.strip())
37
+ return chunks
38
 
39
+ # Prepare embeddings for each book
40
+ model = SentenceTransformer("all-MiniLM-L6-v2")
41
+ index = faiss.IndexFlatL2(model.get_sentence_embedding_dimension())
42
+ chunked_texts = [chunk_text(text) for text in all_texts]
43
+ all_chunks = [chunk for chunks in chunked_texts for chunk in chunks]
44
+ embeddings = model.encode(all_chunks, convert_to_tensor=True).detach().cpu().numpy()
45
+ index.add(embeddings)
46
 
47
+ # Function to generate response
48
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
49
+ # Step 1: Retrieve relevant chunks based on user message
50
+ query_embedding = model.encode([message], convert_to_tensor=True).detach().cpu().numpy()
51
+ k = 5
52
+ _, indices = index.search(query_embedding, k)
53
+ relevant_chunks = " ".join([all_chunks[idx] for idx in indices[0]])
54
+
55
+ # Step 2: Create prompt for the model
56
+ prompt = f"{system_message}\n\nUser Query: {message}\n\nRelevant Information: {relevant_chunks}"
57
  response = ""
58
 
59
+ # Step 3: Generate response
60
  for message in client.chat_completion(
61
+ [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
62
  max_tokens=max_tokens,
63
  stream=True,
64
  temperature=temperature,
65
  top_p=top_p,
66
  ):
67
  token = message.choices[0].delta.content
 
68
  response += token
69
  yield response
70
 
71
+ # Gradio ChatInterface with additional inputs
 
 
 
72
  demo = gr.ChatInterface(
73
  respond,
74
  additional_inputs=[
75
+ gr.Textbox(value="You are a helpful and empathetic mental health assistant.", label="System message"),
76
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
77
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
78
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
79
  ],
80
  )
81
 
82
+ # Launch the Gradio interface
83
  if __name__ == "__main__":
84
+ demo.launch()