import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load the model and tokenizer @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("Izza-shahzad-13/recipe-generator") model = AutoModelForSeq2SeqLM.from_pretrained("Izza-shahzad-13/recipe-generator") return tokenizer, model tokenizer, model = load_model() # Streamlit App st.title("🍳 Recipe Generator App") st.markdown("Generate delicious recipes by entering the ingredients you have!") # Input ingredients ingredients = st.text_area( "Enter ingredients (comma-separated):", placeholder="e.g., chicken, onion, garlic, tomatoes", ) # Generate recipe button if st.button("Generate Recipe"): if ingredients: with st.spinner("Generating your recipe... 🍲"): # Prepare input for the model inputs = tokenizer(f"Ingredients: {ingredients}", return_tensors="pt") # Generate recipe outputs = model.generate(inputs["input_ids"], max_length=150, num_beams=5, early_stopping=True) recipe = tokenizer.decode(outputs[0], skip_special_tokens=True) # Display the recipe st.success("Here's your recipe:") st.write(recipe) else: st.warning("Please enter some ingredients!") # Footer st.markdown("---") st.markdown("Built with ❤️ using Streamlit and Hugging Face 🤗")