# Ref: https://huggingface.co/spaces/multimodalart/cosxl import gradio as gr from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler import spaces import torch model_id = "aipicasso/emi-2" token=os.envron["TOKEN"] scheduler = EulerAncestralDiscreteScheduler.from_pretraind(model_id) pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16) pipe_normal.to("cuda") @spaces.GPU def run_normal(prompt, negative_prompt="", guidance_scale=7, progress=gr.Progress(track_tqdm=True)): return pipe_normal(prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=20).images[0] normal_examples = ["portrait photo of a girl, photograph, highly detailed face, depth of field, moody light, golden hour, style by Dan Winters, Russell James, Steve McCurry, centered, extremely detailed, Nikon D850, award winning photography", "backlit photography of a dog", "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "A photo of beautiful mountain with realistic sunset and blue lake, highly detailed, masterpiece"] with gr.Blocks(css=css) as demo: gr.Markdown('''# Emi 2 Official demo for Emi 2 ''') with gr.Group(): with gr.Row(): prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: backlit photography of a dog") button_normal = gr.Button("Generate", min_width=120) output_normal = gr.Image(label="Your result image", interactive=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt_normal = gr.Textbox(label="Negative Prompt") guidance_scale_normal = gr.Number(label="Guidance Scale", value=7) gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) gr.on( triggers=[ button_normal.click, prompt_normal.submit ], fn=run_normal, inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], outputs=[output_normal], ) if __name__ == "__main__": demo.launch(share=True)