FaceRecog / predict.py
J007acky's picture
FirstFace
c5380c5
raw
history blame
1.47 kB
import face_recognition
import pickle
import cv2
import pyrebase
# Initialize Firebase using Pyrebase
config = {
"apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
"databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
"authDomain": "socioverse-2025.firebaseapp.com",
"projectId": "socioverse-2025",
"storageBucket": "socioverse-2025.appspot.com",
"messagingSenderId": "689574504641",
"appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
"serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
}
firebase = pyrebase.initialize_app(config)
storage = firebase.storage()
storage.child().download("Faces/pkl/face_encodings.pkl","face_encodings.pkl")
# Load the stored face encodings and labels from the pickle file
with open("face_encodings.pkl", "rb") as file:
data = pickle.load(file)
face_encodings = data["encodings"]
labels = data["labels"]
# Load a new image you want to recognize
new_image = cv2.imread("download.jpg")
new_face_encoding = face_recognition.face_encodings(new_image)
if len(new_face_encoding) == 0:
print("No faces found in the new image.")
else:
# Compare the new face encoding to the stored encodings
results = face_recognition.compare_faces(face_encodings, new_face_encoding[0])
for i, result in enumerate(results):
if result:
print(f"Recognised : {labels[i]}")