J007acky commited on
Commit
d1e5541
·
1 Parent(s): 9b9e94c
Files changed (3) hide show
  1. FastAPI.py +48 -2
  2. encode_pkl.py +0 -65
  3. predict.py +0 -45
FastAPI.py CHANGED
@@ -23,11 +23,16 @@ config = {
23
  firebase = pyrebase.initialize_app(config)
24
  storage = firebase.storage()
25
 
26
-
 
27
 
28
 
29
  app = FastAPI()
30
 
 
 
 
 
31
  class ImgInput(BaseModel):
32
  image_url: HttpUrl
33
 
@@ -69,7 +74,48 @@ def recognize_face(image_url: HttpUrl) -> ImgOutput:
69
 
70
 
71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72
  @app.post('/')
73
  async def scoring_endpoint(item:ImgInput):
74
  result = recognize_face(item.image_url)
75
- return result
 
 
 
 
 
 
 
23
  firebase = pyrebase.initialize_app(config)
24
  storage = firebase.storage()
25
 
26
+ # Define the folder containing face images in the Firebase Storage bucket
27
+ storage_folder = "Faces/"
28
 
29
 
30
  app = FastAPI()
31
 
32
+ class ImgSave(BaseModel):
33
+ image_url: HttpUrl
34
+ user_name: str
35
+
36
  class ImgInput(BaseModel):
37
  image_url: HttpUrl
38
 
 
74
 
75
 
76
 
77
+ def add_face(image_url: HttpUrl,user_name : str) -> ImgOutput:
78
+ # Downloading image
79
+ response = requests.get(image_url)
80
+ with open("examp.jpg", 'wb') as file:
81
+ file.write(response.content)
82
+
83
+ # Load the stored face encodings and labels from the pickle file
84
+ with open("face_encodings.pkl", "rb") as file:
85
+ data = pickle.load(file)
86
+ face_encodings = data["encodings"]
87
+ labels = data["labels"]
88
+
89
+ # Load a new image you want to recognize
90
+ new_image = cv2.imread("examp.jpg")
91
+
92
+ # Convert the BGR image to RGB
93
+ rgb_img = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)
94
+
95
+ encode = face_recognition.face_encodings(new_image)[0]
96
+ face_encodings.append(encode)
97
+ labels.append(user_name)
98
+
99
+ # Delete the temporary downloaded image
100
+ os.remove("examp.jpg")
101
+
102
+ # Save the encodings and labels to a pickle file
103
+ data = {"encodings": face_encodings, "labels": labels}
104
+ with open("face_encodings.pkl", "wb") as file:
105
+ pickle.dump(data, file)
106
+
107
+ # Upload the pickle file to Firebase Storage
108
+ pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
109
+ pkl_blob.put("face_encodings.pkl")
110
+
111
+
112
  @app.post('/')
113
  async def scoring_endpoint(item:ImgInput):
114
  result = recognize_face(item.image_url)
115
+ return result
116
+
117
+
118
+ @app.post('/user/')
119
+ async def scoring_endpoint(item:ImgSave):
120
+ add_face(item.image_url, item.user_name)
121
+ return ImgOutput(label="User Saved")
encode_pkl.py DELETED
@@ -1,65 +0,0 @@
1
- import os
2
- import cv2
3
- import face_recognition
4
- import pickle
5
- import pyrebase
6
-
7
- # Initialize Firebase using Pyrebase
8
- config = {
9
- "apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
10
- "databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
11
- "authDomain": "socioverse-2025.firebaseapp.com",
12
- "projectId": "socioverse-2025",
13
- "storageBucket": "socioverse-2025.appspot.com",
14
- "messagingSenderId": "689574504641",
15
- "appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
16
- "serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
17
- }
18
-
19
- firebase = pyrebase.initialize_app(config)
20
- storage = firebase.storage()
21
-
22
- # Define the folder containing face images in the Firebase Storage bucket
23
- storage_folder = "Faces/"
24
-
25
- # Create an array to store encodings and corresponding labels
26
- face_encodings = []
27
- labels = []
28
-
29
- # List all files in the Firebase Storage folder
30
- blobs = storage.child(storage_folder).list_files()
31
-
32
-
33
- for blob in blobs:
34
- if blob.name.startswith(storage_folder) and (blob.name.endswith(".jpeg") or blob.name.endswith(".jpg") or blob.name.endswith(".png")):
35
- # Download the image to a local file
36
- url = storage.child(f"{blob.name}").get_url(None)
37
-
38
- storage.child(url).download(f"{blob.name}","temp.jpeg")
39
- # Load the image using OpenCV
40
- img = cv2.imread("temp.jpeg")
41
-
42
- # Convert the BGR image to RGB
43
- rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
44
-
45
- encode = face_recognition.face_encodings(img)[0]
46
- face_encodings.append(encode)
47
- name_parts = blob.name.split('/')
48
- name = name_parts[-1]
49
- name_parts = name.split('$')
50
- name = name_parts[0]
51
- labels.append(name)
52
-
53
- # Delete the temporary downloaded image
54
- os.remove("temp.jpeg")
55
-
56
- # Save the encodings and labels to a pickle file
57
- data = {"encodings": face_encodings, "labels": labels}
58
- with open("face_encodings.pkl", "wb") as file:
59
- pickle.dump(data, file)
60
-
61
- # Upload the pickle file to Firebase Storage
62
- pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
63
- pkl_blob.put("face_encodings.pkl")
64
-
65
- print("Face encodings and labels saved to Firebase Storage in 'faces/pkl' folder as 'face_encodings.pkl'.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
predict.py DELETED
@@ -1,45 +0,0 @@
1
- import face_recognition
2
- import pickle
3
- import cv2
4
- import pyrebase
5
-
6
-
7
- # Initialize Firebase using Pyrebase
8
- config = {
9
- "apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
10
- "databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
11
- "authDomain": "socioverse-2025.firebaseapp.com",
12
- "projectId": "socioverse-2025",
13
- "storageBucket": "socioverse-2025.appspot.com",
14
- "messagingSenderId": "689574504641",
15
- "appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
16
- "serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
17
- }
18
-
19
- firebase = pyrebase.initialize_app(config)
20
- storage = firebase.storage()
21
-
22
-
23
- storage.child().download("Faces/pkl/face_encodings.pkl","face_encodings.pkl")
24
-
25
- # Load the stored face encodings and labels from the pickle file
26
- with open("face_encodings.pkl", "rb") as file:
27
- data = pickle.load(file)
28
- face_encodings = data["encodings"]
29
- labels = data["labels"]
30
-
31
- # Load a new image you want to recognize
32
- new_image = cv2.imread("download.jpg")
33
-
34
-
35
- new_face_encoding = face_recognition.face_encodings(new_image)
36
-
37
- if len(new_face_encoding) == 0:
38
- print("No faces found in the new image.")
39
- else:
40
- # Compare the new face encoding to the stored encodings
41
- results = face_recognition.compare_faces(face_encodings, new_face_encoding[0])
42
-
43
- for i, result in enumerate(results):
44
- if result:
45
- print(f"Recognised : {labels[i]}")