FinalLast
Browse files- FastAPI.py +48 -2
- encode_pkl.py +0 -65
- predict.py +0 -45
FastAPI.py
CHANGED
@@ -23,11 +23,16 @@ config = {
|
|
23 |
firebase = pyrebase.initialize_app(config)
|
24 |
storage = firebase.storage()
|
25 |
|
26 |
-
|
|
|
27 |
|
28 |
|
29 |
app = FastAPI()
|
30 |
|
|
|
|
|
|
|
|
|
31 |
class ImgInput(BaseModel):
|
32 |
image_url: HttpUrl
|
33 |
|
@@ -69,7 +74,48 @@ def recognize_face(image_url: HttpUrl) -> ImgOutput:
|
|
69 |
|
70 |
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
@app.post('/')
|
73 |
async def scoring_endpoint(item:ImgInput):
|
74 |
result = recognize_face(item.image_url)
|
75 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
firebase = pyrebase.initialize_app(config)
|
24 |
storage = firebase.storage()
|
25 |
|
26 |
+
# Define the folder containing face images in the Firebase Storage bucket
|
27 |
+
storage_folder = "Faces/"
|
28 |
|
29 |
|
30 |
app = FastAPI()
|
31 |
|
32 |
+
class ImgSave(BaseModel):
|
33 |
+
image_url: HttpUrl
|
34 |
+
user_name: str
|
35 |
+
|
36 |
class ImgInput(BaseModel):
|
37 |
image_url: HttpUrl
|
38 |
|
|
|
74 |
|
75 |
|
76 |
|
77 |
+
def add_face(image_url: HttpUrl,user_name : str) -> ImgOutput:
|
78 |
+
# Downloading image
|
79 |
+
response = requests.get(image_url)
|
80 |
+
with open("examp.jpg", 'wb') as file:
|
81 |
+
file.write(response.content)
|
82 |
+
|
83 |
+
# Load the stored face encodings and labels from the pickle file
|
84 |
+
with open("face_encodings.pkl", "rb") as file:
|
85 |
+
data = pickle.load(file)
|
86 |
+
face_encodings = data["encodings"]
|
87 |
+
labels = data["labels"]
|
88 |
+
|
89 |
+
# Load a new image you want to recognize
|
90 |
+
new_image = cv2.imread("examp.jpg")
|
91 |
+
|
92 |
+
# Convert the BGR image to RGB
|
93 |
+
rgb_img = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)
|
94 |
+
|
95 |
+
encode = face_recognition.face_encodings(new_image)[0]
|
96 |
+
face_encodings.append(encode)
|
97 |
+
labels.append(user_name)
|
98 |
+
|
99 |
+
# Delete the temporary downloaded image
|
100 |
+
os.remove("examp.jpg")
|
101 |
+
|
102 |
+
# Save the encodings and labels to a pickle file
|
103 |
+
data = {"encodings": face_encodings, "labels": labels}
|
104 |
+
with open("face_encodings.pkl", "wb") as file:
|
105 |
+
pickle.dump(data, file)
|
106 |
+
|
107 |
+
# Upload the pickle file to Firebase Storage
|
108 |
+
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
|
109 |
+
pkl_blob.put("face_encodings.pkl")
|
110 |
+
|
111 |
+
|
112 |
@app.post('/')
|
113 |
async def scoring_endpoint(item:ImgInput):
|
114 |
result = recognize_face(item.image_url)
|
115 |
+
return result
|
116 |
+
|
117 |
+
|
118 |
+
@app.post('/user/')
|
119 |
+
async def scoring_endpoint(item:ImgSave):
|
120 |
+
add_face(item.image_url, item.user_name)
|
121 |
+
return ImgOutput(label="User Saved")
|
encode_pkl.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import face_recognition
|
4 |
-
import pickle
|
5 |
-
import pyrebase
|
6 |
-
|
7 |
-
# Initialize Firebase using Pyrebase
|
8 |
-
config = {
|
9 |
-
"apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
|
10 |
-
"databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
|
11 |
-
"authDomain": "socioverse-2025.firebaseapp.com",
|
12 |
-
"projectId": "socioverse-2025",
|
13 |
-
"storageBucket": "socioverse-2025.appspot.com",
|
14 |
-
"messagingSenderId": "689574504641",
|
15 |
-
"appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
|
16 |
-
"serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
|
17 |
-
}
|
18 |
-
|
19 |
-
firebase = pyrebase.initialize_app(config)
|
20 |
-
storage = firebase.storage()
|
21 |
-
|
22 |
-
# Define the folder containing face images in the Firebase Storage bucket
|
23 |
-
storage_folder = "Faces/"
|
24 |
-
|
25 |
-
# Create an array to store encodings and corresponding labels
|
26 |
-
face_encodings = []
|
27 |
-
labels = []
|
28 |
-
|
29 |
-
# List all files in the Firebase Storage folder
|
30 |
-
blobs = storage.child(storage_folder).list_files()
|
31 |
-
|
32 |
-
|
33 |
-
for blob in blobs:
|
34 |
-
if blob.name.startswith(storage_folder) and (blob.name.endswith(".jpeg") or blob.name.endswith(".jpg") or blob.name.endswith(".png")):
|
35 |
-
# Download the image to a local file
|
36 |
-
url = storage.child(f"{blob.name}").get_url(None)
|
37 |
-
|
38 |
-
storage.child(url).download(f"{blob.name}","temp.jpeg")
|
39 |
-
# Load the image using OpenCV
|
40 |
-
img = cv2.imread("temp.jpeg")
|
41 |
-
|
42 |
-
# Convert the BGR image to RGB
|
43 |
-
rgb_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
44 |
-
|
45 |
-
encode = face_recognition.face_encodings(img)[0]
|
46 |
-
face_encodings.append(encode)
|
47 |
-
name_parts = blob.name.split('/')
|
48 |
-
name = name_parts[-1]
|
49 |
-
name_parts = name.split('$')
|
50 |
-
name = name_parts[0]
|
51 |
-
labels.append(name)
|
52 |
-
|
53 |
-
# Delete the temporary downloaded image
|
54 |
-
os.remove("temp.jpeg")
|
55 |
-
|
56 |
-
# Save the encodings and labels to a pickle file
|
57 |
-
data = {"encodings": face_encodings, "labels": labels}
|
58 |
-
with open("face_encodings.pkl", "wb") as file:
|
59 |
-
pickle.dump(data, file)
|
60 |
-
|
61 |
-
# Upload the pickle file to Firebase Storage
|
62 |
-
pkl_blob = storage.child(f"{storage_folder}pkl/face_encodings.pkl")
|
63 |
-
pkl_blob.put("face_encodings.pkl")
|
64 |
-
|
65 |
-
print("Face encodings and labels saved to Firebase Storage in 'faces/pkl' folder as 'face_encodings.pkl'.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
predict.py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import face_recognition
|
2 |
-
import pickle
|
3 |
-
import cv2
|
4 |
-
import pyrebase
|
5 |
-
|
6 |
-
|
7 |
-
# Initialize Firebase using Pyrebase
|
8 |
-
config = {
|
9 |
-
"apiKey": "AIzaSyClnRJAnrJgAgkYjuYnlvu-CJ6Cxyklebo",
|
10 |
-
"databaseURL": "https://console.firebase.google.com/project/socioverse-2025/database/socioverse-2025-default-rtdb/data/~2F",
|
11 |
-
"authDomain": "socioverse-2025.firebaseapp.com",
|
12 |
-
"projectId": "socioverse-2025",
|
13 |
-
"storageBucket": "socioverse-2025.appspot.com",
|
14 |
-
"messagingSenderId": "689574504641",
|
15 |
-
"appId": "1:689574504641:web:a22f6a2fa343e4221acc40",
|
16 |
-
"serviceAccount":"socioverse-2025-firebase-adminsdk-gcc6m-6bfb53e6d9.json"
|
17 |
-
}
|
18 |
-
|
19 |
-
firebase = pyrebase.initialize_app(config)
|
20 |
-
storage = firebase.storage()
|
21 |
-
|
22 |
-
|
23 |
-
storage.child().download("Faces/pkl/face_encodings.pkl","face_encodings.pkl")
|
24 |
-
|
25 |
-
# Load the stored face encodings and labels from the pickle file
|
26 |
-
with open("face_encodings.pkl", "rb") as file:
|
27 |
-
data = pickle.load(file)
|
28 |
-
face_encodings = data["encodings"]
|
29 |
-
labels = data["labels"]
|
30 |
-
|
31 |
-
# Load a new image you want to recognize
|
32 |
-
new_image = cv2.imread("download.jpg")
|
33 |
-
|
34 |
-
|
35 |
-
new_face_encoding = face_recognition.face_encodings(new_image)
|
36 |
-
|
37 |
-
if len(new_face_encoding) == 0:
|
38 |
-
print("No faces found in the new image.")
|
39 |
-
else:
|
40 |
-
# Compare the new face encoding to the stored encodings
|
41 |
-
results = face_recognition.compare_faces(face_encodings, new_face_encoding[0])
|
42 |
-
|
43 |
-
for i, result in enumerate(results):
|
44 |
-
if result:
|
45 |
-
print(f"Recognised : {labels[i]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|