Spaces:
Sleeping
Sleeping
changed language to italian
Browse files
app.py
CHANGED
@@ -12,17 +12,24 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
|
|
16 |
|
17 |
-
model = SpeechT5ForTextToSpeech.from_pretrained(
|
18 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
19 |
|
20 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
21 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
22 |
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
def translate(audio):
|
25 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "
|
26 |
return outputs["text"]
|
27 |
|
28 |
|
@@ -41,7 +48,7 @@ def speech_to_speech_translation(audio):
|
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
45 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
46 |
|
47 |

|
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
model_id = "J3/speecht5_finetuned_voxpopuli_it"
|
16 |
+
processor = SpeechT5Processor.from_pretrained(model_id)
|
17 |
|
18 |
+
model = SpeechT5ForTextToSpeech.from_pretrained(model_id).to(device)
|
19 |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
|
21 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
22 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
23 |
|
24 |
|
25 |
+
# from transformers import VitsModel, VitsTokenizer
|
26 |
+
# model_id = 'Matthijs/mms-tts-nld'
|
27 |
+
# model = VitsModel.from_pretrained(model_id).to(device)
|
28 |
+
# tokenizer = VitsTokenizer.from_pretrained(model_id).to(device)
|
29 |
+
|
30 |
+
|
31 |
def translate(audio):
|
32 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})
|
33 |
return outputs["text"]
|
34 |
|
35 |
|
|
|
48 |
|
49 |
title = "Cascaded STST"
|
50 |
description = """
|
51 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
52 |
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
53 |
|
54 |

|