J3 commited on
Commit
0d87935
·
1 Parent(s): 7652b47

changed language to italian

Browse files
Files changed (1) hide show
  1. app.py +11 -4
app.py CHANGED
@@ -12,17 +12,24 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
 
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
22
 
23
 
 
 
 
 
 
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
26
  return outputs["text"]
27
 
28
 
@@ -41,7 +48,7 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
 
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ model_id = "J3/speecht5_finetuned_voxpopuli_it"
16
+ processor = SpeechT5Processor.from_pretrained(model_id)
17
 
18
+ model = SpeechT5ForTextToSpeech.from_pretrained(model_id).to(device)
19
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
20
 
21
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
22
  speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
23
 
24
 
25
+ # from transformers import VitsModel, VitsTokenizer
26
+ # model_id = 'Matthijs/mms-tts-nld'
27
+ # model = VitsModel.from_pretrained(model_id).to(device)
28
+ # tokenizer = VitsTokenizer.from_pretrained(model_id).to(device)
29
+
30
+
31
  def translate(audio):
32
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "it"})
33
  return outputs["text"]
34
 
35
 
 
48
 
49
  title = "Cascaded STST"
50
  description = """
51
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in italian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
52
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
53
 
54
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")