File size: 17,486 Bytes
7c88df9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import os
import time
from typing import Any, Dict, Tuple
import asyncio
import numpy as np
import torch
from dotenv import load_dotenv
from vespa.application import Vespa
from vespa.io import VespaQueryResponse
from .colpali import SimMapGenerator
import backend.stopwords
import logging


class VespaQueryClient:
    MAX_QUERY_TERMS = 64
    VESPA_SCHEMA_NAME = "pdf_page"
    SELECT_FIELDS = "id,title,url,blur_image,page_number,snippet,text"

    def __init__(self, logger: logging.Logger):
        """
        Initialize the VespaQueryClient by loading environment variables and establishing a connection to the Vespa application.
        """
        load_dotenv()
        self.logger = logger

        if os.environ.get("USE_MTLS") == "true":
            self.logger.info("Connected using mTLS")
            mtls_key = os.environ.get("VESPA_CLOUD_MTLS_KEY")
            mtls_cert = os.environ.get("VESPA_CLOUD_MTLS_CERT")

            self.vespa_app_url = os.environ.get("VESPA_APP_MTLS_URL")
            if not self.vespa_app_url:
                raise ValueError(
                    "Please set the VESPA_APP_MTLS_URL environment variable"
                )

            if not mtls_cert or not mtls_key:
                raise ValueError(
                    "USE_MTLS was true, but VESPA_CLOUD_MTLS_KEY and VESPA_CLOUD_MTLS_CERT were not set"
                )

            # write the key and cert to a file
            mtls_key_path = "/tmp/vespa-data-plane-private-key.pem"
            with open(mtls_key_path, "w") as f:
                f.write(mtls_key)

            mtls_cert_path = "/tmp/vespa-data-plane-public-cert.pem"
            with open(mtls_cert_path, "w") as f:
                f.write(mtls_cert)

            # Instantiate Vespa connection
            self.app = Vespa(
                url=self.vespa_app_url, key=mtls_key_path, cert=mtls_cert_path
            )
        else:
            self.logger.info("Connected using token")
            self.vespa_app_url = os.environ.get("VESPA_APP_TOKEN_URL")
            if not self.vespa_app_url:
                raise ValueError(
                    "Please set the VESPA_APP_TOKEN_URL environment variable"
                )

            self.vespa_cloud_secret_token = os.environ.get("VESPA_CLOUD_SECRET_TOKEN")

            if not self.vespa_cloud_secret_token:
                raise ValueError(
                    "Please set the VESPA_CLOUD_SECRET_TOKEN environment variable"
                )

            # Instantiate Vespa connection
            self.app = Vespa(
                url=self.vespa_app_url,
                vespa_cloud_secret_token=self.vespa_cloud_secret_token,
            )

        self.app.wait_for_application_up()
        self.logger.info(f"Connected to Vespa at {self.vespa_app_url}")

    def get_fields(self, sim_map: bool = False):
        if not sim_map:
            return self.SELECT_FIELDS
        else:
            return "summaryfeatures"

    def format_query_results(
        self, query: str, response: VespaQueryResponse, hits: int = 5
    ) -> dict:
        """
        Format the Vespa query results.

        Args:
            query (str): The query text.
            response (VespaQueryResponse): The response from Vespa.
            hits (int, optional): Number of hits to display. Defaults to 5.

        Returns:
            dict: The JSON content of the response.
        """
        query_time = response.json.get("timing", {}).get("searchtime", -1)
        query_time = round(query_time, 2)
        count = response.json.get("root", {}).get("fields", {}).get("totalCount", 0)
        result_text = f"Query text: '{query}', query time {query_time}s, count={count}, top results:\n"
        self.logger.debug(result_text)
        return response.json

    async def query_vespa_bm25(
        self,
        query: str,
        q_emb: torch.Tensor,
        hits: int = 3,
        timeout: str = "10s",
        sim_map: bool = False,
        **kwargs,
    ) -> dict:
        """
        Query Vespa using the BM25 ranking profile.
        This corresponds to the "BM25" radio button in the UI.

        Args:
            query (str): The query text.
            q_emb (torch.Tensor): Query embeddings.
            hits (int, optional): Number of hits to retrieve. Defaults to 3.
            timeout (str, optional): Query timeout. Defaults to "10s".

        Returns:
            dict: The formatted query results.
        """
        async with self.app.asyncio(connections=1) as session:
            query_embedding = self.format_q_embs(q_emb)

            start = time.perf_counter()
            response: VespaQueryResponse = await session.query(
                body={
                    "yql": (
                        f"select {self.get_fields(sim_map=sim_map)} from {self.VESPA_SCHEMA_NAME} where userQuery();"
                    ),
                    "ranking": self.get_rank_profile("bm25", sim_map),
                    "query": query,
                    "timeout": timeout,
                    "hits": hits,
                    "input.query(qt)": query_embedding,
                    "presentation.timing": True,
                    **kwargs,
                },
            )
            assert response.is_successful(), response.json
            stop = time.perf_counter()
            self.logger.debug(
                f"Query time + data transfer took: {stop - start} s, Vespa reported searchtime was "
                f"{response.json.get('timing', {}).get('searchtime', -1)} s"
            )
        return self.format_query_results(query, response)

    def float_to_binary_embedding(self, float_query_embedding: dict) -> dict:
        """
        Convert float query embeddings to binary embeddings.

        Args:
            float_query_embedding (dict): Dictionary of float embeddings.

        Returns:
            dict: Dictionary of binary embeddings.
        """
        binary_query_embeddings = {}
        for key, vector in float_query_embedding.items():
            binary_vector = (
                np.packbits(np.where(np.array(vector) > 0, 1, 0))
                .astype(np.int8)
                .tolist()
            )
            binary_query_embeddings[key] = binary_vector
            if len(binary_query_embeddings) >= self.MAX_QUERY_TERMS:
                self.logger.warning(
                    f"Warning: Query has more than {self.MAX_QUERY_TERMS} terms. Truncating."
                )
                break
        return binary_query_embeddings

    def create_nn_query_strings(
        self, binary_query_embeddings: dict, target_hits_per_query_tensor: int = 20
    ) -> Tuple[str, dict]:
        """
        Create nearest neighbor query strings for Vespa.

        Args:
            binary_query_embeddings (dict): Binary query embeddings.
            target_hits_per_query_tensor (int, optional): Target hits per query tensor. Defaults to 20.

        Returns:
            Tuple[str, dict]: Nearest neighbor query string and query tensor dictionary.
        """
        nn_query_dict = {}
        for i in range(len(binary_query_embeddings)):
            nn_query_dict[f"input.query(rq{i})"] = binary_query_embeddings[i]
        nn = " OR ".join(
            [
                f"({{targetHits:{target_hits_per_query_tensor}}}nearestNeighbor(embedding,rq{i}))"
                for i in range(len(binary_query_embeddings))
            ]
        )
        return nn, nn_query_dict

    def format_q_embs(self, q_embs: torch.Tensor) -> dict:
        """
        Convert query embeddings to a dictionary of lists.

        Args:
            q_embs (torch.Tensor): Query embeddings tensor.

        Returns:
            dict: Dictionary where each key is an index and value is the embedding list.
        """
        return {idx: emb.tolist() for idx, emb in enumerate(q_embs)}

    async def get_result_from_query(
        self,
        query: str,
        q_embs: torch.Tensor,
        ranking: str,
        idx_to_token: dict,
    ) -> Dict[str, Any]:
        """
        Get query results from Vespa based on the ranking method.

        Args:
            query (str): The query text.
            q_embs (torch.Tensor): Query embeddings.
            ranking (str): The ranking method to use.
            idx_to_token (dict): Index to token mapping.

        Returns:
            Dict[str, Any]: The query results.
        """

        # Remove stopwords from the query to avoid visual emphasis on irrelevant words (e.g., "the", "and", "of")
        query = backend.stopwords.filter(query)

        rank_method = ranking.split("_")[0]
        sim_map: bool = len(ranking.split("_")) > 1 and ranking.split("_")[1] == "sim"
        if rank_method == "colpali":  # ColPali
            result = await self.query_vespa_colpali(
                query=query, ranking=rank_method, q_emb=q_embs, sim_map=sim_map
            )
        elif rank_method == "hybrid":  # Hybrid ColPali+BM25
            result = await self.query_vespa_colpali(
                query=query, ranking=rank_method, q_emb=q_embs, sim_map=sim_map
            )
        elif rank_method == "bm25":
            result = await self.query_vespa_bm25(query, q_embs, sim_map=sim_map)
        else:
            raise ValueError(f"Unsupported ranking: {rank_method}")
        if "root" not in result or "children" not in result["root"]:
            result["root"] = {"children": []}
            return result
        for single_result in result["root"]["children"]:
            self.logger.debug(single_result["fields"].keys())
        return result

    def get_sim_maps_from_query(
        self, query: str, q_embs: torch.Tensor, ranking: str, idx_to_token: dict
    ):
        """
        Get similarity maps from Vespa based on the ranking method.

        Args:
            query (str): The query text.
            q_embs (torch.Tensor): Query embeddings.
            ranking (str): The ranking method to use.
            idx_to_token (dict): Index to token mapping.

        Returns:
            Dict[str, Any]: The query results.
        """
        # Get the result by calling asyncio.run
        result = asyncio.run(
            self.get_result_from_query(query, q_embs, ranking, idx_to_token)
        )
        vespa_sim_maps = []
        for single_result in result["root"]["children"]:
            vespa_sim_map = single_result["fields"].get("summaryfeatures", None)
            if vespa_sim_map is not None:
                vespa_sim_maps.append(vespa_sim_map)
            else:
                raise ValueError("No sim_map found in Vespa response")
        return vespa_sim_maps

    async def get_full_image_from_vespa(self, doc_id: str) -> str:
        """
        Retrieve the full image from Vespa for a given document ID.

        Args:
            doc_id (str): The document ID.

        Returns:
            str: The full image data.
        """
        async with self.app.asyncio(connections=1) as session:
            start = time.perf_counter()
            response: VespaQueryResponse = await session.query(
                body={
                    "yql": f'select full_image from {self.VESPA_SCHEMA_NAME} where id contains "{doc_id}"',
                    "ranking": "unranked",
                    "presentation.timing": True,
                    "ranking.matching.numThreadsPerSearch": 1,
                },
            )
            assert response.is_successful(), response.json
            stop = time.perf_counter()
            self.logger.debug(
                f"Getting image from Vespa took: {stop - start} s, Vespa reported searchtime was "
                f"{response.json.get('timing', {}).get('searchtime', -1)} s"
            )
        return response.json["root"]["children"][0]["fields"]["full_image"]

    def get_results_children(self, result: VespaQueryResponse) -> list:
        return result["root"]["children"]

    def results_to_search_results(
        self, result: VespaQueryResponse, idx_to_token: dict
    ) -> list:
        # Initialize sim_map_ fields in the result
        fields_to_add = [
            f"sim_map_{token}_{idx}"
            for idx, token in idx_to_token.items()
            if not SimMapGenerator.should_filter_token(token)
        ]
        for child in result["root"]["children"]:
            for sim_map_key in fields_to_add:
                child["fields"][sim_map_key] = None
        return self.get_results_children(result)

    async def get_suggestions(self, query: str) -> list:
        async with self.app.asyncio(connections=1) as session:
            start = time.perf_counter()
            yql = f'select questions from {self.VESPA_SCHEMA_NAME} where questions matches (".*{query}.*")'
            response: VespaQueryResponse = await session.query(
                body={
                    "yql": yql,
                    "query": query,
                    "ranking": "unranked",
                    "presentation.timing": True,
                    "presentation.summary": "suggestions",
                    "ranking.matching.numThreadsPerSearch": 1,
                },
            )
            assert response.is_successful(), response.json
            stop = time.perf_counter()
            self.logger.debug(
                f"Getting suggestions from Vespa took: {stop - start} s, Vespa reported searchtime was "
                f"{response.json.get('timing', {}).get('searchtime', -1)} s"
            )
            search_results = (
                response.json["root"]["children"]
                if "root" in response.json and "children" in response.json["root"]
                else []
            )
            questions = [
                result["fields"]["questions"]
                for result in search_results
                if "questions" in result["fields"]
            ]

            unique_questions = set([item for sublist in questions for item in sublist])

            # remove an artifact from our data generation
            if "string" in unique_questions:
                unique_questions.remove("string")

            return list(unique_questions)

    def get_rank_profile(self, ranking: str, sim_map: bool) -> str:
        if sim_map:
            return f"{ranking}_sim"
        else:
            return ranking

    async def query_vespa_colpali(
        self,
        query: str,
        ranking: str,
        q_emb: torch.Tensor,
        target_hits_per_query_tensor: int = 100,
        hnsw_explore_additional_hits: int = 300,
        hits: int = 3,
        timeout: str = "10s",
        sim_map: bool = False,
        **kwargs,
    ) -> dict:
        """
        Query Vespa using nearest neighbor search with mixed tensors for MaxSim calculations.
        This corresponds to the "ColPali" radio button in the UI.

        Args:
            query (str): The query text.
            q_emb (torch.Tensor): Query embeddings.
            target_hits_per_query_tensor (int, optional): Target hits per query tensor. Defaults to 20.
            hits (int, optional): Number of hits to retrieve. Defaults to 3.
            timeout (str, optional): Query timeout. Defaults to "10s".

        Returns:
            dict: The formatted query results.
        """
        async with self.app.asyncio(connections=1) as session:
            float_query_embedding = self.format_q_embs(q_emb)
            binary_query_embeddings = self.float_to_binary_embedding(
                float_query_embedding
            )

            # Mixed tensors for MaxSim calculations
            query_tensors = {
                "input.query(qtb)": binary_query_embeddings,
                "input.query(qt)": float_query_embedding,
            }
            nn_string, nn_query_dict = self.create_nn_query_strings(
                binary_query_embeddings, target_hits_per_query_tensor
            )
            query_tensors.update(nn_query_dict)
            response: VespaQueryResponse = await session.query(
                body={
                    **query_tensors,
                    "presentation.timing": True,
                    "yql": (
                        f"select {self.get_fields(sim_map=sim_map)} from {self.VESPA_SCHEMA_NAME} where {nn_string} or userQuery()"
                    ),
                    "ranking.profile": self.get_rank_profile(
                        ranking=ranking, sim_map=sim_map
                    ),
                    "timeout": timeout,
                    "hits": hits,
                    "query": query,
                    "hnsw.exploreAdditionalHits": hnsw_explore_additional_hits,
                    "ranking.rerankCount": 100,
                    **kwargs,
                },
            )
            assert response.is_successful(), response.json
        return self.format_query_results(query, response)

    async def keepalive(self) -> bool:
        """
        Query Vespa to keep the connection alive.

        Returns:
            bool: True if the connection is alive.
        """
        async with self.app.asyncio(connections=1) as session:
            response: VespaQueryResponse = await session.query(
                body={
                    "yql": f"select title from {self.VESPA_SCHEMA_NAME} where true limit 1;",
                    "ranking": "unranked",
                    "query": "keepalive",
                    "timeout": "3s",
                    "hits": 1,
                },
            )
            assert response.is_successful(), response.json
        return True